Deductive Program Verification with WHY3

Andrei Paskevich

LMF, Université Paris-Saclay — Toccata, Inria Saclay

http://why3.lri.fr/ejcp-2022

ÉJCP 2022

Software is hard. — Donald Knuth

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification

- 1. provide a program with a specification: a mathematical model
- 2. build a formal proof showing that the code respects the specification

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification

- 1. provide a program with a specification: a mathematical model
- 2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949

```
u := 1

for r = 0 to n - 1 do

v := u

for s = 1 to r do

u := u + v
```

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification

- 1. provide a program with a specification: a mathematical model
- 2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949

First theoretical foundation: Floyd-Hoare logic, 1969

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification

- 1. provide a program with a specification: a mathematical model
- 2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949

First theoretical foundation: Floyd-Hoare logic, 1969

First grand success in practice: metro line 14, 1998

tool: Atelier B, proof by refinement

Some other major success stories

Flight control software in A380, 2005

safety proof: the absence of execution errors

tool: Astrée, abstract interpretation

proof of functional properties

tool: Caveat, deductive verification

Hyper-V — a native hypervisor, 2008

tools: VCC + automated prover Z3, deductive verification

CompCert — verified C compiler, 2009
 tool: Cog, generation of the correct-by-construction code

 seL4 — an OS micro-kernel, 2009 tool: Isabelle/HOL, deductive verification

CakeML — verified ML compiler, 2016
 tool: HOL4, deductive verification, self-bootstrap

1. Tool of the day

WHYML, a programming language

- type polymorphism variants
- · limited support for higher order
- pattern matching exceptions
- break, continue, and return
- ghost code and ghost data (CAV 2014)
- mutable data with controlled aliasing
- · contracts · loop and type invariants

WHYML, a programming language

- type polymorphism variants
- limited support for higher order
- pattern matching exceptions
- break, continue, and return
- ghost code and ghost data (CAV 2014)
- mutable data with controlled aliasing
- · contracts · loop and type invariants

WHYML, a specification language

- polymorphic & algebraic types
- limited support for higher order
- inductive predicates
 (FroCos 2011) (CADE 2013)

WHYML, a programming language

- type polymorphism variants
- limited support for higher order
- pattern matching exceptions
- break, continue, and return
- ghost code and ghost data (CAV 2014)
- · mutable data with controlled aliasing
- · contracts · loop and type invariants

WHY3, a program verification tool

- VC generation using WP or fast WP
- 70+ VC transformations (≈ tactics)
- support for 25+ ATP and ITP systems (Boogie 2011) (ESOP 2013) (VSTTE 2013)

WHYML, a specification language

- polymorphic & algebraic types
- limited support for higher order
- inductive predicates
 (FroCos 2011) (CADE 2013)

WHY3 out of a nutshell

Three different ways of using WHY3

- as a logical language
 - a convenient front-end to many theorem provers
- as a programming language to prove algorithms
 - see examples in our gallery http://toccata.lri.fr/gallery/why3.en.html
- as an intermediate verification language
 - Java programs: Krakatoa (Marché Paulin Urbain)
 - C programs: Frama-C (Marché Moy)
 - Ada programs: SPARK 2014 (Adacore)
 - probabilistic programs: EasyCrypt (Barthe et al.)

Example: maximum subarray problem

```
let maximum_subarray (a: array int): int
  ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
  ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }</pre>
```

Kadane's algorithm

```
(* .....\####### max ######|.....
(* .....|### cur ####
let maximum_subarray (a: array int): int
 ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }</pre>
 ensures { exists l h: int. 0 \le l \le h \le length a / sum a l h = result }
 let ref max = 0 in
 let ref cur = 0 in
 for i = 0 to length a - 1 do
   cur += a[i];
   if cur < 0 then cur <- 0:
   if cur > max then max <- cur
 done:
 max
```

Kadane's algorithm

```
(* .....\####### max ######|.....
(* .....|### cur ####
                                                                   *)
let maximum_subarray (a: array int): int
 ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }</pre>
 ensures { exists l h: int. 0 \le l \le h \le length a / length a | h = result }
 let ref max = 0 in
 let ref cur = 0 in
 let ghost ref cl = 0 in
 for i = 0 to length a - 1 do
   invariant { forall l: int. 0 <= l <= i -> sum a l i <= cur }</pre>
   invariant { 0 <= cl <= i /\ sum a cl i = cur }</pre>
   cur += a[i];
   if cur < 0 then begin cur <- 0: cl <- i+1 end:
   if cur > max then max <- cur
 done:
 max
```

Kadane's algorithm

```
(* .....\####### max ######|.....
(* .....|### cur ####
                                                                    *)
let maximum_subarray (a: array int): int
 ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }</pre>
 ensures { exists l h: int. 0 \le l \le h \le l ength a / \ sum a l h = result \}
 let ref max = 0 in
 let ref cur = 0 in
 let ghost ref cl = 0 in
 let ahost ref lo = 0 in
 let ghost ref hi = 0 in
 for i = 0 to length a - 1 do
   invariant { forall l: int. 0 <= l <= i -> sum a l i <= cur }
   invariant { 0 <= cl <= i /\ sum a cl i = cur }</pre>
   invariant { forall l h: int. 0 <= l <= h <= i -> sum a l h <= max }</pre>
   invariant { 0 <= lo <= hi <= i /\ sum a lo hi = max }
   cur += a[i];
   if cur < 0 then begin cur <- 0: cl <- i+1 end:
   if cur > max then begin max <- cur: lo <- cl: hi <- i+1 end
 done:
 max
```

Why3 proof session

2. Program correctness

Pure terms

```
t ::= ..., -1, 0, 1, ..., 42, ...
                                        integer constants
          true | false
                                         Boolean constants
          u \mid v \mid w
                                        immutable variable
         x \mid y \mid z
                                        dereferenced pointer
          t op t
                                         binary operation
           op t
                                         unary operation
op ::= + | - | *
                                        arithmetic operations
     | = | \neq | < | > | \leq | \geqslant arithmetic comparisons
      | \wedge | \vee | \neg
                                         Boolean connectives
```

- two data types: mathematical integers and Booleans
- well-typed terms evaluate without errors (no division)
- evaluation of a term does not change the program memory

Program expressions

```
e ::= skip do nothing t pure term x \leftarrow t assignment e; e sequence t let t e in t binding t let ref t e in t allocation t while t do t done loop
```

- three types: integers, Booleans, and unit
- references (pointers) are not first-class values
- expressions can allocate and modify memory
- well-typed expressions evaluate without errors

Typed expressions

- $\tau ::=$ int | bool and $\zeta ::= \tau |$ unit
- references (pointers) are not first-class values
- expressions can allocate and modify memory
- well-typed expressions evaluate without errors

Syntactic sugar

```
x \leftarrow e \equiv \text{let } v = e \text{ in } x \leftarrow v

if e then e_1 else e_2 \equiv \text{let } v = e \text{ in if } v then e_1 else e_2

if e_1 then e_2 \equiv \text{if } e_1 then e_2 else skip

e_1 \&\& e_2 \equiv \text{if } e_1 then e_2 else false

e_1 \mid \mid e_2 \equiv \text{if } e_1 then true else e_2
```

```
let ref sum = 1 in
let ref count = 0 in
while sum ≤ n do
   count ← count + 1;
   sum ← sum + 2 * count + 1
done;
count
```

What is the result of this expression for a given n?

```
let ref sum = 1 in
let ref count = 0 in
while sum ≤ n do
   count ← count + 1;
   sum ← sum + 2 * count + 1
done;
count
```

What is the result of this expression for a given n?

Informal specification:

- at the end, count contains the truncated square root of n
- for instance, given n = 42, the returned value is 6

Hoare triples

A statement about program correctness:

$$\{P\}\ e\ \{Q\}$$

- P precondition property
- e expression
- Q postcondition property

What is the meaning of a Hoare triple?

 $\{P\}$ e $\{Q\}$ if we execute e in a state that satisfies P, then the computation either diverges or terminates in a state that satisfies Q

This is partial correctness: we say nothing about termination.

Examples of valid Hoare triples for partial correctness:

- $\{x = 1\}\ x \leftarrow x + 2\ \{x = 3\}$
- $\{x = y\}$ x + y $\{\text{result} = 2y\}$
- $\{\exists v. \ x = 4v\} \ x + 42 \ \{\exists w. \ result = 2w\}$
- $\{true\}$ while true do skip done $\{false\}$

Examples of valid Hoare triples for partial correctness:

- $\{x = 1\}\ x \leftarrow x + 2\ \{x = 3\}$
- $\{x = y\}$ x + y $\{\text{result} = 2y\}$
- $\{\exists v. \ x = 4v\} \ x + 42 \ \{\exists w. \ \text{result} = 2w\}$
- {true} while true do skip done { false }
 - after this loop, everything is trivially verified
 - ergo: not proving termination can be fatal

Examples of valid Hoare triples for partial correctness:

- $\{x = 1\}\ x \leftarrow x + 2\ \{x = 3\}$
- $\{x = y\}$ x + y $\{\text{result} = 2y\}$
- $\{\exists v. \ x = 4v\} \ x + 42 \ \{\exists w. \ \text{result} = 2w\}$
- {true} while true do skip done { false }
 - after this loop, everything is trivially verified
 - · ergo: not proving termination can be fatal

In our square root example:

Examples of valid Hoare triples for partial correctness:

- $\{x = 1\}\ x \leftarrow x + 2\ \{x = 3\}$
- $\{x = y\}$ x + y $\{\text{result} = 2y\}$
- $\{\exists v. \ x = 4v\} \ x + 42 \ \{\exists w. \ result = 2w\}$
- {true} while true do skip done { false }
 - after this loop, everything is trivially verified
 - · ergo: not proving termination can be fatal

In our square root example:

$$\{n\geqslant 0\}$$
 ISQRT $\{?\}$

Examples of valid Hoare triples for partial correctness:

- $\{x = 1\}\ x \leftarrow x + 2\ \{x = 3\}$
- $\{x = y\}$ x + y $\{\text{result} = 2y\}$
- $\{\exists v. \ x = 4v\} \ x + 42 \ \{\exists w. \ result = 2w\}$
- {true} while true do skip done { false }
 - after this loop, everything is trivially verified
 - ergo: not proving termination can be fatal

In our square root example:

$${n \geqslant 0} ISQRT \{ result^2 \leqslant n < (result+1)^2 \}$$

Weakest preconditions

How can we establish the correctness of a program?

One solution: Edsger Dijkstra, 1975

Predicate transformer WP(e, Q)

e expression

Q postcondition

computes the weakest precondition P such that $\{P\}$ e $\{Q\}$

Intuition of WP

$$x \leftarrow 3 * x * y$$
 { x is even }

Intuition of WP

 $\{3xy \text{ is even }\}$ $x \leftarrow 3*x*y$ $\{x \text{ is even }\}$

Intuition of WP

 $\{\ 3xy\ \text{is even}\ \}$ $x\leftarrow 3*x*y$ $\{\ x\ \text{is even}\ \}$ $\{\ Q[s]\ \}$ $x\leftarrow s$ $\{\ Q[x]\ \}$

```
\{\ 3xy\ \text{is even}\ \} x\leftarrow 3*x*y \{\ x\ \text{is even}\ \} \{\ Q[s]\ \} x\leftarrow s \{\ Q[x]\ \} if c then e_1 \{\ Q\ \} else e_2
```

```
\{\ 3xy \text{ is even }\} x\leftarrow 3*x*y \{\ x \text{ is even }\} \{\ Q[s]\ \} x\leftarrow s \{\ Q[x]\ \} if c then e_1\ Q \{\ Q\ \} else e_2\ Q
```

```
\{\ 3xy \text{ is even}\ \} x \leftarrow 3*x*y \qquad \{x \text{ is even}\ \} \{\ Q[s]\ \} x \leftarrow s \qquad \{\ Q[x]\ \} if c \text{ then } P_1 e_1 Q \qquad \{\ Q\ \} else P_2 e_2 Q
```

```
\{3xy \text{ is even }\} x \leftarrow 3*x*y \{x \text{ is even }\}
      \{Q[s]\} x \leftarrow s \{Q[x]\}
{ if c then P_1 if c then P_1 e_1 Q { Q }
     else P_2 } else P_2 e_2 Q
                  if c then e \{Q\}
```

```
\{3xy \text{ is even }\} x \leftarrow 3*x*y \{x \text{ is even }\}
      \{Q[s]\} x \leftarrow s \{Q[x]\}
{ if c then P_1 if c then P_1 e_1 Q { Q }
     else P_2 } else P_2 e_2 Q
                  if c then PeQ \{Q\}
```

```
\{3xy \text{ is even }\} x \leftarrow 3*x*y \{x \text{ is even }\}
      \{Q[s]\} x \leftarrow s \{Q[x]\}
{ if c then P_1 if c then P_1 e_1 Q { Q }
     else P_2 else P_2 e_2 Q
{ if c then P if c then PeQ { Q }
      else Q }
```

```
\{3xy \text{ is even }\} x \leftarrow 3*x*y \{x \text{ is even }\}
      \{Q[s]\} x \leftarrow s \{Q[x]\}
{ if c then P_1 if c then P_1 e_1 Q { Q }
     else P_2 else P_2 e_2 Q
{ if c then P if c then PeQ { Q }
      else Q }
                while c do e done \{Q\}
```

```
\{3xy \text{ is even }\} x \leftarrow 3*x*y \{x \text{ is even }\}
      \{Q[s]\} x \leftarrow s \{Q[x]\}
{ if c then P_1 if c then P_1 e_1 Q { Q }
     else P_2 else P_2 e_2 Q
{ if c then P if c then PeQ { Q }
      else Q }
                while c do e done \{Q\}
```

Definition of WP

$$\mathrm{WP}(\mathsf{skip},Q) \equiv Q$$
 $\mathrm{WP}(t,Q) \equiv Q[\mathsf{result} \mapsto t]$
 $\mathrm{WP}(x \leftarrow t,Q) \equiv Q[x \mapsto t]$
 $\mathrm{WP}(\mathsf{e}_1\;;\;\mathsf{e}_2,Q) \equiv \mathrm{WP}(\mathsf{e}_1,\mathrm{WP}(\mathsf{e}_2,Q))$
 $\mathrm{WP}(\mathsf{let}\;v=\mathsf{e}_1\;\mathsf{in}\;\mathsf{e}_2,Q) \equiv \mathrm{WP}(\mathsf{e}_1,\mathrm{WP}(\mathsf{e}_2,Q)[v \mapsto \mathsf{result}])$
 $\mathrm{WP}(\mathsf{let}\;ref\;x=\mathsf{e}_1\;\mathsf{in}\;\mathsf{e}_2,Q) \equiv \mathrm{WP}(\mathsf{e}_1,\mathrm{WP}(\mathsf{e}_2,Q)[x \mapsto \mathsf{result}])$
 $\mathrm{WP}(\mathsf{if}\;t\;\mathsf{then}\;\mathsf{e}_1\;\mathsf{else}\;\mathsf{e}_2,Q) \equiv (t \to \mathrm{WP}(\mathsf{e}_1,Q)) \land (\neg t \to \mathrm{WP}(\mathsf{e}_2,Q))$

```
if odd q then r \leftarrow r + p;

p \leftarrow p + p;

q \leftarrow \text{half } q
```

if odd
$$q$$
 then $r \leftarrow r + p$ else skip; $p \leftarrow p + p$; $q \leftarrow \text{half } q$

```
if odd q then
        r \leftarrow r + p
  else
         skip;
  p \leftarrow p + p;
  q \leftarrow \mathsf{half}\ q
Q[p, q, r]
```

```
if odd q then
        r \leftarrow r + p
  else
        skip;
  p \leftarrow p + p;
Q[p, half q, r]
  q \leftarrow \mathsf{half} \ q
Q[p, q, r]
```

```
if odd q then
       r \leftarrow r + p
  else
        skip;
Q[p+p, half q, r]
  p \leftarrow p + p;
Q[p, half q, r]
  q \leftarrow \mathsf{half}\ q
Q[p, q, r]
```

```
if odd q then
       r \leftarrow r + p
    Q[p+p, half q, r]
  else
       skip;
     Q[p+p, half q, r]
  p \leftarrow p + p;
Q[p, half q, r]
  q \leftarrow \mathsf{half}\ q
Q[p, q, r]
```

```
if odd q then
    Q[p+p, half q, r+p]
       r \leftarrow r + p
    Q[p+p, half q, r]
  else
    Q[p+p, half q, r]
       skip:
    Q[p+p, half q, r]
  p \leftarrow p + p;
Q[p, half q, r]
  q \leftarrow \mathsf{half} \ q
Q[p, q, r]
```

```
(odd q \rightarrow Q[p+p, half q, r+p]) \land
(\neg \text{ odd } q \rightarrow Q[p+p, \text{half } q, r])
  if odd q then
     Q[p+p, half q, r+p]
       r \leftarrow r + p
     Q[p+p, half q, r]
  else
     Q[p+p, half q, r]
       skip:
     Q[p+p, half q, r]
  p \leftarrow p + p;
Q[p, half q, r]
  q \leftarrow \text{half } q
Q[p, q, r]
```

Definition of WP: loops

```
 \begin{array}{lll} \operatorname{WP}(\operatorname{while}\ t\ \operatorname{do}\ e\ \operatorname{done},Q) \equiv \\ & \exists\ J: \operatorname{Prop}. & \operatorname{some}\ \operatorname{\it invariant}\ \operatorname{\it property}\ J \\ & J \wedge & \operatorname{that}\ \operatorname{holds}\ \operatorname{at}\ \operatorname{the}\ \operatorname{loop}\ \operatorname{entry} \\ & \forall x_1 \dots x_k. & \operatorname{and}\ \operatorname{is}\ \operatorname{preserved} \\ & (J \wedge \ t \to \operatorname{WP}(e,J)) \wedge & \operatorname{after}\ \operatorname{a}\ \operatorname{single}\ \operatorname{iteration}, \\ & (J \wedge \neg t \to Q) & \operatorname{is}\ \operatorname{strong}\ \operatorname{enough}\ \operatorname{to}\ \operatorname{prove}\ Q \\ \end{array}
```

 $x_1 \dots x_k$ references modified in e

We cannot know the values of the modified references after n iterations

- therefore, we prove preservation and the post for arbitrary values
- the invariant must provide all the needed information about the state

Definition of WP: annotated loops

Finding an appropriate invariant is difficult in the general case

• this is equivalent to constructing a proof of Q by induction

We can ease the task of automated tools by providing annotations:

 $x_1 \dots x_k$ references modified in e

```
let ref p = a in

let ref q = b in

let ref r = 0 in

while q > 0 invariant J[p,q,r] do

if odd q then r \leftarrow r + p;

p \leftarrow p + p;

q \leftarrow \text{half } q

done;

r

result = a * b
```

```
let ref p = a in

let ref q = b in

let ref r = 0 in

while q > 0 invariant J[p,q,r] do

if odd q then r \leftarrow r + p;

p \leftarrow p + p;

q \leftarrow \text{half } q

done;

r = a * b
```

```
let ref p = a in
  let ref q = b in
  let ref r = 0 in
  while q > 0 invariant J[p, q, r] do
       if odd q then r \leftarrow r + p;
      p \leftarrow p + p;
      q \leftarrow \mathsf{half} \ q
    J[p, q, r]
  done:
r = a * b
```

```
let ref p = a in
  let ref q = b in
  let ref r = 0 in
  while q > 0 invariant J[p, q, r] do
        (odd q \rightarrow J[p+p, half q, r+p]) \land
     (\neg \text{ odd } q \rightarrow J[p+p, \text{half } q, r])
        if odd q then r \leftarrow r + p;
       p \leftarrow p + p;
       q \leftarrow \mathsf{half} \ q
     J[p, q, r]
  done:
r = a * b
```

```
let ref p = a in
  let ref q = b in
  let ref r = 0 in
J[p,q,r] \wedge
\forall pqr. J[p,q,r] \rightarrow
  (a > 0 \rightarrow
        (odd q \rightarrow J[p+p, half q, r+p]) \land
     (\neg \text{ odd } q \rightarrow J[p+p, \text{half } q, r])) \land
  (q \leq 0 \rightarrow
     r = a * b
  while q > 0 invariant J[p, q, r] do
        if odd q then r \leftarrow r + p;
        p \leftarrow p + p;
        q \leftarrow \mathsf{half} \ q
  done;
  r
```

```
J[a,b,0] \wedge
\forall pqr. J[p,q,r] \rightarrow
  (q>0 \rightarrow
        (odd q \rightarrow J[p+p, half q, r+p]) \land
     (\neg \text{ odd } q \rightarrow J[p+p, \text{half } q, r])) \land 
  (a \leq 0 \rightarrow
     r = a * b
   let ref p = a in
   let ref q = b in
   let ref r = 0 in
   while q > 0 invariant J[p, q, r] do
        if odd q then r \leftarrow r + p;
        p \leftarrow p + p;
        q \leftarrow \mathsf{half} \ q
   done;
   r
```

Soundness of WP

Theorem

For any e and Q, the triple $\{WP(e,Q)\}$ e $\{Q\}$ is valid.

Can be proved by induction on the structure of the program *e* w.r.t. some reasonable semantics (axiomatic, operational, etc.)

Corollary

To show that $\{P\}$ e $\{Q\}$ is valid, it suffices to prove $P \to \mathrm{WP}(e,Q)$.

This is what WHY3 does.

4. Run-time safety

Run-time errors

Some operations can fail if their safety preconditions are not met:

- arithmetic operations: division par zero, overflows, etc.
- memory access: NULL pointers, buffer overruns, etc.
- assertions

Run-time errors

Some operations can fail if their safety preconditions are not met:

- arithmetic operations: division par zero, overflows, etc.
- memory access: NULL pointers, buffer overruns, etc.
- assertions

A correct program must not fail:

```
\{P\} e \{Q\} if we execute e in a state that satisfies P, then there will be no run-time errors and the computation either diverges or terminates normally in a state that satisfies Q
```

Assertions

A new kind of expression:

$$e ::= \dots$$
 $| assert R fail if R does not hold$

The corresponding weakest precondition rule:

$$\operatorname{WP}(\operatorname{\mathsf{assert}}\ R,Q) \equiv R \wedge Q \equiv R \wedge (R \to Q)$$

The second version is useful in practical deductive verification.

Unsafe operations

We could add other partially defined operations to the language:

and define the WP rules for them:

$$\operatorname{WP}(t_1 \operatorname{div} t_2, Q) \equiv t_2 \neq 0 \land Q[\operatorname{result} \mapsto (t_1 \operatorname{div} t_2)]$$
 $\operatorname{WP}(a[t], Q) \equiv 0 \leqslant t < |a| \land Q[\operatorname{result} \mapsto a[t]]$
...

But we would rather let the programmers do it themselves.

Subroutines

We may want to delegate some functionality to functions:

let
$$f(v_1:\tau_1)\dots(v_n:\tau_n):\varsigma\mathscr{C}=e$$
 defined function val $f(v_1:\tau_1)\dots(v_n:\tau_n):\varsigma\mathscr{C}$ abstract function

Function behaviour is specified with a contract:

Postcondition Q may refer to the initial value of a global reference: x°

```
let incr_r (v: int): int writes r
  ensures result = r° ∧ r = r° + v
= let u = r in r ← u + v; u
```

Subroutines

We may want to delegate some functionality to functions:

let
$$f(v_1:\tau_1)\dots(v_n:\tau_n): \varsigma \mathscr{C}=e$$
 defined function val $f(v_1:\tau_1)\dots(v_n:\tau_n): \varsigma \mathscr{C}$ abstract function

Function behaviour is specified with a contract:

Postcondition Q may refer to the initial value of a global reference: x°

Verification condition (\vec{x} are all global references mentioned in f):

$$VC($$
let $f ...) \equiv \forall \vec{x} \vec{v} . P \rightarrow WP(e, Q)[\vec{x}^{\circ} \mapsto \vec{x}]$

One more expression:

$$e ::= \dots$$
 $| f t \dots t |$ function call

and its weakest precondition rule:

$$ext{WP}(f \ t_1 \dots t_n, Q) \equiv P_f[\vec{v} \mapsto \vec{t}] \land \\ (\forall \vec{x} \, \forall \text{result.} \, Q_f[\vec{v} \mapsto \vec{t}, \vec{x}^\circ \mapsto \vec{w}] \to Q)[\vec{w} \mapsto \vec{x}]$$

 P_f precondition of f \vec{x} references modified in f Q_f postcondition of f \vec{x} references used in f \vec{v} formal parameters of f \vec{w} fresh variables

Modular proof: when verifying a function call, we only use the function's contract, not its code.

Examples

```
let max (x y: int) : int
  ensures { result >= x /\ result >= y }
  ensures { result = x \/ result = y }
  = if x >= y then x else y
```

```
val ref r : int (* declare a global reference *)

let incr_r (v: int) : int
  requires { v > 0 }
  writes { r }
  ensures { result = old r /\ r = old r + v }

= let u = r in
  r <- u + v;
  u</pre>
```

6. Total correctness: termination

Termination

Problem: prove that the program terminates for every initial state that satisfies the precondition.

It suffices to show that

- every loop makes a finite number of iterations
- recursive function calls cannot go on indefinitely

Solution: prove that every loop iteration and every recursive call decreases a certain value, called variant, with respect to some well-founded order.

For example, for signed integers, a practical well-founded order is

$$i \prec j = i < j \land 0 \leqslant j$$

Loop termination

A new annotation:

```
e ::= \dots | while t invariant J variant t \cdot \prec do e done
```

The corresponding weakest precondition rule:

$$egin{aligned} &\operatorname{WP}(\mathsf{while}\ t\ \mathsf{invariant}\ J\ \mathsf{variant}\ s \cdot \prec\ \mathsf{do}\ e\ \mathsf{done},\ Q) \equiv \ &J \wedge \ &orall x_1 \dots x_k. \ &(J \wedge \ t \to \operatorname{WP}(e, J \wedge s \prec w)[w \mapsto s]) \wedge \ &(J \wedge
eg t \to Q) \end{aligned}$$

 $x_1 \dots x_k$ references modified in e

w a fresh variable (the variant at the start of the iteration)

Termination of recursive functions

A new contract clause:

```
let rec f\left(v_1:\tau_1\right)\ldots\left(v_n:\tau_n\right):\varsigma
requires P_f
variant s\cdot \prec
writes \vec{x}
ensures Q_f
=e
```

For each recursive call of f in e:

$$\begin{aligned} \operatorname{WP}(f\ t_1\ \dots\ t_n,Q) &\equiv P_f[\vec{v}\mapsto\vec{t}]\ \wedge\ \boldsymbol{s}[\vec{v}\mapsto\vec{t}]\ \prec\ \boldsymbol{s}[\vec{x}\mapsto\vec{x}^\circ]\ \wedge \\ & (\forall\vec{x}\ \forall \mathsf{result}.\ Q_f[\vec{v}\mapsto\vec{t},\vec{x}^\circ\mapsto\vec{w}]\to Q)[\vec{w}\mapsto\vec{x}] \end{aligned}$$

$$\begin{aligned} s[\vec{v}\mapsto\vec{t}] &\quad \mathsf{variant}\ \mathsf{at}\ \mathsf{the}\ \mathsf{call}\ \mathsf{site} &\quad \vec{x}\quad \mathsf{references}\ \mathsf{used}\ \mathsf{in}\ f \\ s[\vec{x}\mapsto\vec{x}^\circ] &\quad \mathsf{variant}\ \mathsf{at}\ \mathsf{the}\ \mathsf{start}\ \mathsf{of}\ f &\quad \vec{w}\quad \mathsf{fresh}\ \mathsf{variables} \end{aligned}$$

Mutual recursion

Mutually recursive functions must have

- their own variant terms
- a common well-founded order

Thus, if f calls $g t_1 \dots t_n$, the variant decrease precondition is

$$s_g[\vec{v}_g \mapsto \vec{t}] \prec s_f[\vec{x} \mapsto \vec{x}^\circ]$$

$$egin{aligned} ec{v}_g \ s_g[ec{v}_g \mapsto ec{t}\,] \ s_f[ec{x} \mapsto ec{x}^\circ] \end{aligned}$$

 $ec{v}_g$ formal parameters $s_g[ec{v}_g \mapsto ec{t}]$ variant of g at the call site variant of f at the start of f $s_f[\vec{x} \mapsto \vec{x}^\circ]$ variant of f at the start of f

7. Exceptions

- divergence the computation never ends
 - total correctness ensures against non-termination

- divergence the computation never ends
 - total correctness ensures against non-termination
- abnormal termination the computation fails
 - partial correctness ensures against run-time errors

- divergence the computation never ends
 - total correctness ensures against non-termination
- abnormal termination the computation fails
 - partial correctness ensures against run-time errors
- normal termination the computation produces a result
 - partial correctness ensures conformance to the contract

- divergence the computation never ends
 - total correctness ensures against non-termination
- abnormal termination the computation fails
 - partial correctness ensures against run-time errors
- normal termination the computation produces a result
 - partial correctness ensures conformance to the contract
- exceptional termination produces a different kind of result

- divergence the computation never ends
 - total correctness ensures against non-termination
- abnormal termination the computation fails
 - partial correctness ensures against run-time errors
- normal termination the computation produces a result
 - partial correctness ensures conformance to the contract
- exceptional termination produces a different kind of result
 - the contract should also cover exceptional termination

- divergence the computation never ends
 - total correctness ensures against non-termination
- abnormal termination the computation fails
 - partial correctness ensures against run-time errors
- normal termination the computation produces a result
 - partial correctness ensures conformance to the contract
- exceptional termination produces a different kind of result
 - the contract should also cover exceptional termination
 - each potential exception E gets its own postcondition Q_E

- divergence the computation never ends
 - total correctness ensures against non-termination
- abnormal termination the computation fails
 - partial correctness ensures against run-time errors
- normal termination the computation produces a result
 - partial correctness ensures conformance to the contract
- exceptional termination produces a different kind of result
 - the contract should also cover exceptional termination
 - each potential exception E gets its own postcondition Q_E
 - partial correctness: if E is raised, then Q_E holds

- divergence the computation never ends
 - total correctness ensures against non-termination
- abnormal termination the computation fails
 - partial correctness ensures against run-time errors
- normal termination the computation produces a result
 - partial correctness ensures conformance to the contract
- exceptional termination produces a different kind of result

```
exception Not_found  \begin{array}{l} \text{val binary\_search (a: array int) (v: int) : int} \\ \text{requires } \{ \text{ forall i j. } 0 \leqslant i \leqslant j < \text{length a} \rightarrow \text{a[i]} \leqslant \text{a[j]} \ \} \\ \text{ensures} \ \{ \text{ 0} \leqslant \text{result} < \text{length a} \land \text{a[result]} = \text{v} \ \} \\ \text{raises} \ \{ \text{ Not\_found} \rightarrow \text{forall i. } 0 \leqslant i < \text{length a} \rightarrow \text{a[i]} \neq \text{v} \ \} \\ \end{array}
```

Our language keeps growing:

```
e ::= \dots
| raise E raise an exception
| try e with E \rightarrow e  catch an exception
```

$$WP(skip, Q, Q_E) \equiv Q$$

Our language keeps growing:

```
e ::= \dots
\mid raise E raise an exception
\mid try e with E \rightarrow e catch an exception
```

$$\mathrm{WP}(\mathsf{skip}, Q, Q_\mathsf{E}) \equiv Q$$
 $\mathrm{WP}(\mathsf{raise}\;\mathsf{E}, Q, Q_\mathsf{E}) \equiv Q_\mathsf{E}$

Our language keeps growing:

```
e ::= \dots
\mid raise E raise an exception
\mid try e with E \rightarrow e catch an exception
```

$$\mathrm{WP}(\mathsf{skip}, Q, Q_\mathsf{E}) \equiv Q$$
 $\mathrm{WP}(\mathsf{raise}\;\mathsf{E}, Q, Q_\mathsf{E}) \equiv Q_\mathsf{E}$
 $\mathrm{WP}(\pmb{e}_1\;;\pmb{e}_2, Q, Q_\mathsf{E}) \equiv \mathrm{WP}(\pmb{e}_1, \mathrm{WP}(\pmb{e}_2, Q, Q_\mathsf{E}), Q_\mathsf{E})$

Our language keeps growing:

```
e ::= \dots
\mid raise E raise an exception
\mid try e with E \rightarrow e catch an exception
```

$$\begin{split} \mathrm{WP}(\mathsf{skip}, Q, Q_\mathsf{E}) &\equiv Q \\ \mathrm{WP}(\mathsf{raise}\; \mathsf{E}, Q, Q_\mathsf{E}) &\equiv Q_\mathsf{E} \\ \mathrm{WP}(\textit{e}_\mathsf{1}\; ; \, \textit{e}_\mathsf{2}, Q, Q_\mathsf{E}) &\equiv \mathrm{WP}(\textit{e}_\mathsf{1}, \mathrm{WP}(\textit{e}_\mathsf{2}, Q, Q_\mathsf{E}), Q_\mathsf{E}) \\ \end{split}$$

$$\mathrm{WP}(\mathsf{try}\; \textit{e}_\mathsf{1}\; \mathsf{with}\; \mathsf{E} \to \textit{e}_\mathsf{2}, Q, Q_\mathsf{E}) &\equiv \mathrm{WP}(\textit{e}_\mathsf{1}, Q, \mathrm{WP}(\textit{e}_\mathsf{2}, Q, Q_\mathsf{E})) \end{split}$$

Just another let-in

Exceptions can carry data:

Still, all needed mechanisms are already in WP:

$$\mathrm{WP}(t,Q,Q_{\mathsf{E}}) \equiv Q[\mathrm{result} \mapsto t]$$
 $\mathrm{WP}(\mathsf{raise} \; \mathsf{E} \; t,Q,Q_{\mathsf{E}}) \equiv Q_{\mathsf{E}}[\mathrm{result} \mapsto t]$
 $\mathrm{WP}(\mathsf{let} \; v = e_1 \; \mathsf{in} \; e_2,Q,Q_{\mathsf{E}}) \equiv \mathrm{WP}(e_1,\mathrm{WP}(e_2,Q,Q_{\mathsf{E}})[v \mapsto \mathsf{result}],Q_{\mathsf{E}})$
 $\mathrm{WP}(\mathsf{try} \; e_1 \; \mathsf{with} \; \mathsf{E} \; v \to e_2,Q,Q_{\mathsf{E}}) \equiv \mathrm{WP}(e_1,Q,\mathrm{WP}(e_2,Q,Q_{\mathsf{E}})[v \mapsto \mathsf{result}])$

Functions with exceptions

A new contract clause:

```
\begin{array}{l} \mathsf{let}\ f\ (v_1:\tau_1)\ \dots\ (v_n:\tau_n)\ :\ \varsigma \\ \mathsf{requires}\ P_f \\ \mathsf{writes}\ \vec{\mathbf{x}} \\ \mathsf{ensures}\ Q_f \\ \mathsf{raises}\ \mathsf{E}\ \to\ Q_{\mathsf{E}f} \\ =\ e \end{array}
```

Verification condition for the function definition:

$$VC($$
let $f...) \equiv \forall \vec{x} \vec{v}. P_f \rightarrow WP(e, Q_f, Q_{Ef})[\vec{x}^{\circ} \mapsto \vec{x}]$

Weakest precondition rule for the function call:

$$\begin{split} \operatorname{WP}(f \ t_1 \ \dots \ t_n, Q, Q_{\mathsf{E}}) & \equiv \ P_f[\vec{v} \mapsto \vec{t}\,] \ \land \\ & (\forall \vec{x} \ \forall \mathsf{result}. \ Q_f[\vec{v} \mapsto \vec{t}, \vec{x}^\circ \mapsto \vec{w}] \to Q)[\vec{w} \mapsto \vec{x}] \ \land \\ & (\forall \vec{x} \ \forall \mathsf{result}. \ Q_{\mathsf{E}f}[\vec{v} \mapsto \vec{t}, \vec{x}^\circ \mapsto \vec{w}] \to Q_{\mathsf{E}})[\vec{w} \mapsto \vec{x}] \end{split}$$

8. Ghost code

Ghost code: example

Compute a Fibonacci number using a recursive function in O(n):

```
let rec aux (a b n: int): int
  requires { 0 <= n }
  requires {
  ensures {
  variant { n }
= if n = 0 then a else aux b (a+b) (n-1)
let fib_rec (n: int): int
  requires { 0 <= n }
  ensures { result = fib n }
= aux 0 1 n
(* fib rec 5 = aux 0 1 5 = aux 1 1 4 = aux 1 2 3 =
               aux 2 3 2 = aux 3 5 1 = aux 5 8 0 = 5 *)
```

Ghost code: example

Compute a Fibonacci number using a recursive function in O(n):

```
let rec aux (a b n: int): int
  requires { 0 <= n }
  requires { exists k. 0 \le k / a = fib k / b = fib (k+1) }
  ensures { exists k. 0 \le k / a = fib k / b = fib (k+1) / a
                                         result = fib (k+n) }
  variant { n }
= if n = 0 then a else aux b (a+b) (n-1)
let fib_rec (n: int): int
  requires { 0 <= n }
  ensures { result = fib n }
= aux 0 1 n
(* fib rec 5 = aux 0 1 5 = aux 1 1 4 = aux 1 2 3 =
               aux 2 3 2 = aux 3 5 1 = aux 5 8 0 = 5 *)
```

Ghost code: example

Instead of an existential we can use a ghost parameter:

```
let rec aux (a b n: int) (ghost k: int): int
  requires { 0 <= n }
  requires { 0 <= k /\ a = fib k /\ b = fib (k+1) }
  ensures { result = fib (k+n) }
  variant { n }
= if n = 0 then a else aux b (a+b) (n-1) (k+1)

let fib_rec (n: int): int
  requires { 0 <= n }
  ensures { result = fib n }
= aux 0 1 n 0</pre>
```

Ghost code is used to facilitate specification and proof

⇒ the principle of non-interference:

We must be able to eliminate the ghost code from a program without changing its outcome.

Ghost code is used to facilitate specification and proof

⇒ the principle of non-interference:

We must be able to eliminate the ghost code from a program without changing its outcome.

- material code cannot read ghost data
 - if k is ghost, then (k+1) is ghost, too

Ghost code is used to facilitate specification and proof

⇒ the principle of non-interference:

We must be able to eliminate the ghost code from a program without changing its outcome.

- material code cannot read ghost data
 - if k is ghost, then (k+1) is ghost, too
- ghost code cannot modify material data
 - if r is a material reference, then $r \leftarrow \mathsf{ghost} \ k$ is forbidden

Ghost code is used to facilitate specification and proof

⇒ the principle of non-interference:

We must be able to eliminate the ghost code from a program without changing its outcome.

- material code cannot read ghost data
 - if k is ghost, then (k+1) is ghost, too
- ghost code cannot modify material data
 - if r is a material reference, then $r \leftarrow \mathsf{ghost} \ k$ is forbidden
- ghost code cannot alter the control flow of material code
 - if c is ghost, then if c then ... and while c do ... are ghost

Ghost code is used to facilitate specification and proof

⇒ the principle of non-interference:

We must be able to eliminate the ghost code from a program without changing its outcome.

- material code cannot read ghost data
 - if k is ghost, then (k+1) is ghost, too
- ghost code cannot modify material data
 - if r is a material reference, then $r \leftarrow \mathsf{ghost} \ k$ is forbidden
- ghost code cannot alter the control flow of material code
 - if c is ghost, then if c then ... and while c do ... are ghost
- ghost code cannot diverge
 - we can prove while true do skip done; assert false

Can be declared ghost:

function parameters

```
val aux (a b n: int) (ghost k: int): int
```

Can be declared ghost:

function parameters

```
val aux (a b n: int) (ghost k: int): int
```

record fields and variant fields

Can be declared ghost:

function parameters

```
val aux (a b n: int) (ghost k: int): int
```

record fields and variant fields

local variables and functions

```
let ghost x = qu.elts in ...
let ghost rev_elts qu = qu.tail ++ reverse qu.head
```

Can be declared ghost:

function parameters

```
val aux (a b n: int) (ghost k: int): int
```

record fields and variant fields

local variables and functions

```
let ghost x = qu.elts in ...
let ghost rev_elts qu = qu.tail ++ reverse qu.head
```

program expressions

```
let x = ghost qu.elts in ...
```

How it works?

The material world and the ghost world are built from the same bricks.

Explicitly annotating every ghost expression would be impractical.

How it works?

The material world and the ghost world are built from the same bricks.

Explicitly annotating every ghost expression would be impractical.

Solution: Tweak the type system and use inference (of course!)

$$\Gamma \vdash e : \varsigma$$

 ς — int, bool, unit (also: lists, arrays, etc.)

How it works?

The material world and the ghost world are built from the same bricks.

Explicitly annotating every ghost expression would be impractical.

Solution: Tweak the type system and use inference (of course!)

$$\Gamma \vdash e : \varsigma \cdot \varepsilon$$

$$\varsigma \quad - \text{ int, bool, unit (also: lists, arrays, etc.)}$$

$$\varepsilon \quad - \text{ potential side effects}$$

$$\text{modified references} \qquad r \leftarrow \dots, \quad \text{let ref } r = \dots \text{ in}$$

$$\text{raised exceptions} \qquad \text{raise E, try} \dots \text{ with E} \rightarrow$$

unproved termination

divergence

How it works?

The material world and the ghost world are built from the same bricks.

Explicitly annotating every ghost expression would be impractical.

Solution: Tweak the type system and use inference (of course!)

$$\Gamma \vdash e : \varsigma \cdot \varepsilon \cdot \mathfrak{g}$$

 ς — int, bool, unit (also: lists, arrays, etc.)

arepsilon — potential side effects modified references $r \leftarrow \ldots$, let ref $r = \ldots$ in raised exceptions raise E, try \ldots with E \rightarrow divergence unproved termination

g — is the expression material or ghost?

How it works?

The material world and the ghost world are built from the same bricks.

Explicitly annotating every ghost expression would be impractical.

Solution: Tweak the type system and use inference (of course!)

$$\Gamma \vdash e : \varsigma \cdot \varepsilon \cdot \mathfrak{g} \cdot \mathfrak{m}$$

 ζ — int, bool, unit (also: lists, arrays, etc.)

 ε — potential side effects raised exceptions

divergence

modified references $r \leftarrow \dots$, let ref $r = \dots$ in raise E, try ... with E \rightarrow unproved termination

g — is the expression material or ghost?

m — is the expression's result material or ghost?

Any variable or reference is considered ghost

```
• if explicitly declared ghost: let ghost v^g = 6 * 6 in ...
```

```
• if initialised with a ghost value: let ref r^g = v^g + 6 in ...
```

if declared inside a ghost block: ghost (let x^g = 42 in ...)

- if explicitly declared ghost: let ghost $v^g = 6 * 6 in ...$
- if initialised with a ghost value: let ref $r^g = v^g + 6$ in ...
- if declared inside a ghost block: ghost (let $x^g = 42$ in ...)
- 1. term t is ghost $\equiv t$ contains a ghost variable or reference

- if explicitly declared ghost: let ghost $v^g = 6 * 6 in ...$
- if initialised with a ghost value: let ref $r^g = v^g + 6$ in ...
- if declared inside a ghost block: ghost (let $x^g = 42$ in ...)
- 1. term t is ghost $\equiv t$ contains a ghost variable or reference
- 2. $r \leftarrow t$ is ghost $\equiv r$ is a ghost reference (Q: what about t?)

- if explicitly declared ghost: let ghost $v^g = 6 * 6 in ...$
- if initialised with a ghost value: let ref $r^g = v^g + 6$ in ...
- if declared inside a ghost block: ghost (let $x^g = 42$ in ...)
- 1. term t is ghost $\equiv t$ contains a ghost variable or reference
- 2. $r \leftarrow t$ is ghost $\equiv r$ is a ghost reference (Q: what about t?)
- 3. skip is not ghost

- if explicitly declared ghost: let ghost $v^g = 6 * 6 in ...$
- if initialised with a ghost value: let ref $r^g = v^g + 6$ in ...
- if declared inside a ghost block: ghost (let x^g = 42 in ...)
- 1. term t is ghost $\equiv t$ contains a ghost variable or reference
- 2. $r \leftarrow t$ is ghost $\equiv r$ is a ghost reference (Q: what about t?)
- 3. skip is not ghost
- 4. raise E is not ghost

Any variable or reference is considered ghost

- if explicitly declared ghost: let ghost $v^g = 6 * 6 in ...$
- if initialised with a ghost value: let ref $r^g = v^g + 6$ in ...
- if declared inside a ghost block: ghost (let x^g = 42 in ...)
- 1. term t is ghost $\equiv t$ contains a ghost variable or reference
- 2. $r \leftarrow t$ is ghost $\equiv r$ is a ghost reference (Q: what about t?)
- 3. skip is not ghost
- 4. raise E is not ghost

unless we pass a ghost value with E: raise E v^g

- if explicitly declared ghost: let ghost $v^g = 6 * 6 in ...$
- if initialised with a ghost value: let ref $r^g = v^g + 6$ in ...
- if declared inside a ghost block: ghost (let x^g = 42 in ...)
- 1. term t is ghost $\equiv t$ contains a ghost variable or reference
- 2. $r \leftarrow t$ is ghost $\equiv r$ is a ghost reference (Q: what about t?)
- 3. skip is not ghost
- 4. raise E is not ghost

```
unless we pass a ghost value with E: raise E v^g unless E is expected to carry ghost values: exception E (ghost int)
```

- e modifies a material reference
- *e* diverges (= not proved to terminate)
- e is not ghost and raises an exception

- e modifies a material reference
- *e* diverges (= not proved to terminate)
- e is not ghost and raises an exception

```
5. e_1; e_2 / let v = e_1 in e_2 / let ref v = e_1 in e_2 is ghost \equiv
```

- e_2 is ghost and e_1 has no material effects (Q: what if it has some?)
- e_1 or e_2 is ghost and raises an exception (Q: why does it matter?)

- e modifies a material reference
- *e* diverges (= not proved to terminate)
- e is not ghost and raises an exception
- 5. e_1 ; e_2 / let $v = e_1$ in e_2 / let ref $v = e_1$ in e_2 is ghost \equiv
 - e_2 is ghost and e_1 has no material effects (Q: what if it has some?)
 - e_1 or e_2 is ghost and raises an exception (Q: why does it matter?)
- 6. try e_1 with E ightarrow e_2 / try e_1 with E v
 ightarrow e_2 is ghost \equiv
 - e₁ is ghost
 - e2 is ghost and raises an exception

- e modifies a material reference
- *e* diverges (= not proved to terminate)
- e is not ghost and raises an exception
- 7. if t then e_1 else e_2 is ghost \equiv
 - t is ghost (unless e_1 or e_2 is assert false)
 - e₁ is ghost and e₂ has no material effects
 - e2 is ghost and e1 has no material effects
 - e₁ or e₂ is ghost and raises an exception

- e modifies a material reference
- *e* diverges (= not proved to terminate)
- e is not ghost and raises an exception
- 7. if t then e_1 else e_2 is ghost \equiv
 - t is ghost (unless e_1 or e_2 is assert false)
 - e₁ is ghost and e₂ has no material effects
 - e₂ is ghost and e₁ has no material effects
 - e₁ or e₂ is ghost and raises an exception
- 8. while t do e done is ghost $\equiv t$ or e is ghost

- 9. function call $f t_1 \dots t_n$ is ghost \equiv
 - function f is ghost or some argument t_i is ghost unless f expects a ghost parameter at that position

- 9. function call $f t_1 \dots t_n$ is ghost \equiv
 - function f is ghost or some argument t_i is ghost unless f expects a ghost parameter at that position

When typechecking a function definition

- we expect the ghost parameters to be explicitly specified
- then the ghost status of every subexpression can be inferred

- 9. function call $f t_1 \dots t_n$ is ghost \equiv
 - function f is ghost or some argument t_i is ghost unless f expects a ghost parameter at that position

When typechecking a function definition

- we expect the ghost parameters to be explicitly specified
- then the ghost status of every subexpression can be inferred

Erasure $\lceil \cdot \rceil$ erases ghost data and turns ghost code into skip.

Theorem*: Erasure preserves the material part of program semantics.

Lemma functions

General idea: a function $f \vec{x}$ requires P_f ensures Q_f that

- produces no results
- has no side effects
- terminates

provides a constructive proof of $\forall \vec{x}.P_f \rightarrow Q_f$

⇒ a pure recursive function simulates a proof by induction

Lemma functions

General idea: a function $f \vec{x}$ requires P_f ensures Q_f that

- produces no results
- has no side effects
- terminates

provides a constructive proof of $\forall \vec{x} . P_f \rightarrow Q_f$

⇒ a pure recursive function simulates a proof by induction

Lemma functions

by the postcondition of the recursive call:

```
length (rev_append ll (Cons a r)) = length ll + length (Cons a r)
```

by definition of rev_append:

```
rev_append (Cons a ll) r = rev_append ll (Cons a r)
```

by definition of length:

```
length (Cons a ll) + length r = length ll + length (Cons a r)
```

9. Mutable data

```
module Ref
  type ref 'a = { mutable contents : 'a } (* as in OCaml *)
  function (!) (r: ref 'a) : 'a = r.contents
  let ref (v: 'a) = { contents = v }
  let (!) (r: ref 'a) = r.contents
  let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end</pre>
```

```
module Ref
  type ref 'a = { mutable contents : 'a } (* as in OCaml *)
  function (!) (r: ref 'a) : 'a = r.contents
  let ref (v: 'a) = { contents = v }
  let (!) (r: ref 'a) = r.contents
  let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end</pre>
```

• can be passed between functions as arguments and return values

```
module Ref
  type ref 'a = { mutable contents : 'a } (* as in OCaml *)
  function (!) (r: ref 'a) : 'a = r.contents
  let ref (v: 'a) = { contents = v }
  let (!) (r: ref 'a) = r.contents
  let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end</pre>
```

- can be passed between functions as arguments and return values
- can be created locally or declared globally
 - let r = ref 0 in while !r < 42 do r := !r + 1 done
 - val gr : ref int

```
module Ref
  type ref 'a = { mutable contents : 'a } (* as in OCaml *)
  function (!) (r: ref 'a) : 'a = r.contents
  let ref (v: 'a) = { contents = v }
  let (!) (r: ref 'a) = r.contents
  let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end</pre>
```

- can be passed between functions as arguments and return values
- can be created locally or declared globally
 - let r = ref 0 in while !r < 42 do r := !r + 1 done
 - val gr : ref int
- can hold ghost data
 - let ghost r = ref 42 in ... ghost (r := -!r) ...

```
module Ref
  type ref 'a = { mutable contents : 'a } (* as in OCaml *)
  function (!) (r: ref 'a) : 'a = r.contents
  let ref (v: 'a) = { contents = v }
  let (!) (r: ref 'a) = r.contents
  let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end</pre>
```

- can be passed between functions as arguments and return values
- can be created locally or declared globally
 - let r = ref 0 in while !r < 42 do r := !r + 1 done
 - val gr : ref int
- can hold ghost data
 - let ghost r = ref 42 in ... ghost (r := -!r) ...
- cannot be stored in recursive structures: no list (ref 'a)

```
module Ref
  type ref 'a = { mutable contents : 'a } (* as in OCaml *)
  function (!) (r: ref 'a) : 'a = r.contents
  let ref (v: 'a) = { contents = v }
  let (!) (r: ref 'a) = r.contents
  let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end</pre>
```

- can be passed between functions as arguments and return values
- can be created locally or declared globally
 - let r = ref 0 in while !r < 42 do r := !r + 1 done
 - val gr : ref int
- can hold ghost data
 - let ghost r = ref 42 in ... ghost (r := -!r) ...
- cannot be stored in recursive structures: no list (ref 'a)
- cannot be stored under abstract types: no set (ref 'a)

The problem of alias

```
let double_incr (s1 s2: ref int): unit writes {s1,s2}
  ensures { !s1 = 1 + old !s1 /\ !s2 = 2 + old !s2 }
= s1 := 1 + !s1; s2 := 2 + !s2

let wrong () =
  let s = ref 0 in
  double_incr s s; (* write/write alias *)
  assert { !s = 1 /\ !s = 2 } (* in fact, !s = 3 *)
```

The problem of alias

```
let double_incr (s1 s2: ref int): unit writes {s1,s2}
  ensures { !s1 = 1 + old !s1 /\ !s2 = 2 + old !s2 }

= s1 := 1 + !s1; s2 := 2 + !s2

let wrong () =
  let s = ref 0 in
  double_incr s s; (* write/write alias *)
  assert { !s = 1 /\ !s = 2 } (* in fact, !s = 3 *)
```

```
val g : ref int

let set_from_g (r: ref int): unit writes {r}
  ensures { !r = !g + 1 }
  = r := !g + 1

let wrong () =
  set_from_g g;  (* read/write alias *)
  assert { !g = !g + 1 }  (* contradiction *)
```

The standard WP rule for assignment:

$$WP(x \leftarrow 42, Q[x, y, z]) = Q[42, y, z]$$

But if x and z are two names for the same reference

$$WP(x \leftarrow 42, Q[x, y, z])$$
 should be $Q[42, y, 42]$

Problem: Know, *statically*, when two values are aliased.

The standard WP rule for assignment:

$$WP(x \leftarrow 42, Q[x, y, z]) = Q[42, y, z]$$

But if x and z are two names for the same reference

$$WP(x \leftarrow 42, Q[x, y, z])$$
 should be $Q[42, y, 42]$

Problem: Know, statically, when two values are aliased.

Solution: Tweak the type system and use inference (of course!)

Every mutable type carries an *invisible identity token* — a region:

 $x: \operatorname{ref} \rho \text{ int}$ $y: \operatorname{ref} \pi \text{ int}$ $z: \operatorname{ref} \rho \text{ int}$

Every mutable type carries an *invisible identity token* — a region:

```
x : \text{ref } \rho \text{ int} y : \text{ref } \pi \text{ int} z : \text{ref } \rho \text{ int}
```

Now, some programs typecheck no more: if ... then x else y:?

Every mutable type carries an *invisible identity token* — a region:

$$x : \text{ref } \rho \text{ int}$$
 $y : \text{ref } \pi \text{ int}$ $z : \text{ref } \rho \text{ int}$

Now, some programs typecheck no more: if ... then x else y:?

```
...fortunately: WP(let r = x or maybe y in r \leftarrow 42, Q[x, y, z]) = ?
```

Every mutable type carries an *invisible identity token* — a region:

$$x: \operatorname{ref} \rho \ \operatorname{int} \qquad y: \operatorname{ref} \pi \ \operatorname{int} \qquad z: \operatorname{ref} \rho \ \operatorname{int}$$
 Now, some programs typecheck no more: if ... then $x \ \operatorname{else} y: ?$...fortunately:
$$\operatorname{WP}(\operatorname{let} r = x \ \operatorname{or maybe} y \ \operatorname{in} \ r \leftarrow 42, \ Q[x,y,z]) = ?$$

ML-style type inference reveals the identity of each subexpression

• formal parameters and global references are assumed to be separated

WP with aliases

Every mutable type carries an *invisible identity token* — a region:

$$x: \operatorname{ref} \rho \ \operatorname{int} \qquad y: \operatorname{ref} \pi \ \operatorname{int} \qquad z: \operatorname{ref} \rho \ \operatorname{int}$$
 Now, some programs typecheck no more: if ... then $x \ \operatorname{else} y: ?$...fortunately:
$$\operatorname{WP}(\operatorname{let} r = x \ \operatorname{or maybe} y \ \operatorname{in} \ r \leftarrow 42, \ Q[x,y,z]) = ?$$

ML-style type inference reveals the identity of each subexpression

formal parameters and global references are assumed to be separated

Revised WP rule for assignment: $WP(x_{\tau} \leftarrow t, Q) = Q\sigma$ where σ replaces in Q each variable $y : \pi[\tau]$ with an updated value

• an alias of x can be stored inside a reference inside a record inside a tuple

Can we do more?

Poor man's resizable array:

```
let resa = ref (Array.make 10 0) in (* \text{ resa} : \text{ ref } \rho \text{ (array } \rho_1 \text{ int) } *)
```

Can we do more?

Poor man's resizable array:

```
let resa = ref (Array.make 10 0) in

(* resa : ref \rho (array \rho_1 int) *)
```

Let's resize it:

```
let olda = !resa (* olda : array \rho_1 int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa := newa (* newa : array \rho_2 int *)
```

Can we do more?

Poor man's resizable array:

```
let resa = ref (Array.make 10 0) in

(* resa : ref \rho (array \rho_1 int) *)
```

Let's resize it:

```
let olda = !resa (* olda : array \rho_1 int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa := newa (* newa : array \rho_2 int *)
```

Type mismatch: We break the regions ↔ aliases correspondence!

Poor man's resizable array:

```
let resa = ref (Array.make 10 0) in

(* resa : ref \rho (array \rho_1 int) *)
```

Let's resize it:

```
let olda = !resa (* olda : array \rho_1 int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa := newa (* newa : array \rho_2 int *)
```

Type mismatch: We break the regions ↔ aliases correspondence!

Change the type of resa? What about if ... then resa := newa?

```
let resa = ref (Array.make 10 0) in 
 (* resa : ref \rho (array \rho_1 int) *) 
let olda = !resa (* olda : array \rho_1 int *) in 
let newa = Array.make (2 * length olda) 0 in 
Array.blit olda 0 newa 0 (length olda); 
resa.contents \leftarrow newa (* newa : array \rho_2 int *)
```

newa, olda — the witnesses of the type system corruption

```
let resa = ref (Array.make 10 0) in 
 (* resa : ref \rho (array \rho_1 int) *) 
let olda = !resa (* olda : array \rho_1 int *) in 
let newa = Array.make (2 * length olda) 0 in 
Array.blit olda 0 newa 0 (length olda); 
resa.contents \leftarrow newa (* newa : array \rho_2 int *)
```

newa, olda — the witnesses of the type system corruption

What do we do with undesirable witnesses? — A.G. CAPONE

```
let resa = ref (Array.make 10 0) in 
 (* resa : ref \rho (array \rho_1 int) *) 
let olda = !resa (* olda : array \rho_1 int *) in 
let newa = Array.make (2 * length olda) 0 in 
Array.blit olda 0 newa 0 (length olda); 
resa.contents \leftarrow newa (* newa : array \rho_2 int *)
```

Type-changing expressions have a special effect:

```
writes \rho · resets \rho_1, \rho_2
```

 e_1 ; e_2 is well-typed \Rightarrow in every free variable of e_2 , every region reset by e_1 occurs under a region written by e_1

```
let resa = ref (Array.make 10 0) in 
 (* resa : ref \rho (array \rho_1 int) *) 
let olda = !resa (* olda : array \rho_1 int *) in 
let newa = Array.make (2 * length olda) 0 in 
Array.blit olda 0 newa 0 (length olda); 
resa.contents \leftarrow newa (* newa : array \rho_2 int *)
```

Type-changing expressions have a special effect:

```
writes 
ho · resets 
ho_1, 
ho_2
```

 e_1 ; e_2 is well-typed \Rightarrow in every free variable of e_2 , every region reset by e_1 occurs under a region written by e_1

Thus: resa and its aliases survive, but olda and newa are invalidated.

 e_1 ; e_2 is well-typed \Rightarrow in every free variable of e_2 , every region reset by e_1 occurs under a region written by e_1

 e_1 ; e_2 is well-typed \Rightarrow in every free variable of e_2 , every region reset by e_1 occurs under a region written by e_1

The reset effect also expresses freshness:

If we create a fresh mutable value and give it region ρ , we invalidate all existing variables whose type contains ρ .

 e_1 ; e_2 is well-typed \Rightarrow in every free variable of e_2 , every region reset by e_1 occurs under a region written by e_1

The reset effect also expresses freshness:

If we create a fresh mutable value and give it region ρ , we invalidate all existing variables whose type contains ρ .

Effect union (for sequence or branching):

 x_{τ} survives $\varepsilon_1 \sqcup \varepsilon_2 \Leftrightarrow x_{\tau}$ survives both ε_1 and ε_2 .

```
e_1; e_2 is well-typed \Rightarrow in every free variable of e_2, every region reset by e_1 occurs under a region written by e_1
```

The reset effect also expresses freshness:

If we create a fresh mutable value and give it region ρ , we invalidate all existing variables whose type contains ρ .

Effect union (for sequence or branching):

```
x_{\tau} survives \varepsilon_1 \sqcup \varepsilon_2 \Leftrightarrow x_{\tau} survives both \varepsilon_1 and \varepsilon_2.
```

Thus:

- the reset regions of ε_1 and ε_2 are added together,
- the written regions of ε_i invalidated by ε_{2-i} are ignored.

To sum it all up

The standard WP calculus requires the absence of aliases!

- at least for modified values
- WHY3 relaxes this restriction using static control of aliases

To sum it all up

The standard WP calculus requires the absence of aliases!

- at least for modified values
- WHY3 relaxes this restriction using static control of aliases

The user must indicate the external dependencies of abstract functions:

- val set_from_g (r: ref int): unit writes {r} reads {g}
- otherwise the static control of aliases does not have enough information

To sum it all up

The standard WP calculus requires the absence of aliases!

- at least for modified values
- WHY3 relaxes this restriction using static control of aliases

The user must indicate the external dependencies of abstract functions:

- val set_from_g (r: ref int): unit writes {r} reads {g}
- otherwise the static control of aliases does not have enough information

For programs with arbitrary pointers we need more sophisticated tools:

- memory models (for example, "address-to-value" arrays)
- handle aliases in the VC: separation logic, dynamic frames, etc.

Abstract specification

Aliasing restrictions in WHYML

⇒ certain structures cannot be implemented

Still, we can specify them and verify the client code

- all access is done via abstract functions (private type)
- the type invariant is expressed as an axiom
 - but can be temporarily broken inside a program function

Abstract specification

```
type array 'a = private { mutable ghost elts: map int 'a;
                                        length: int }
  invariant { 0 <= length }</pre>
val ([]) (a: array 'a) (i: int): 'a
  requires { 0 <= i < a.length }</pre>
  ensures { result = a.elts[i] }
val ([]<-) (a: array 'a) (i: int) (v: 'a): unit</pre>
  requires { 0 <= i < a.length }
 writes { a }
  ensures { a.elts = (old a.elts)[i <- v] }</pre>
function get (a: array 'a) (i: int): 'a = a.elts[i]
```

- the immutable fields are preserved implicit postcondition
- the logical function get has no precondition
 - its result outside of the array bounds is undefined

Declarations

- types
 - abstract: type t
 - synonym: type t = list int
 - variant: type list 'a = Nil | Cons 'a (list 'a)
- functions / predicates
 - uninterpreted: function f int: int
 - defined: predicate non_empty (l: list 'a) = l <> Nil
 - inductive: inductive path t (list t) t = ...
- axioms / lemmas / goals
 - qoal G: forall x: int, x >= 0 -> x*x >= 0
- program functions
 - abstract: val ([]) (a: array 'a) (i: int): 'a
 - defined: let mergesort (a: array elt): unit = ...
- exceptions
 - exception Found int

Specification language of WHYML

- programs and specifications use the same data types
- match-with-end, if-then-else, let-in are accepted both in terms and formulas
- functions et predicates can be defined recursively:

```
predicate mem (x: 'a) (l: list 'a) = match l with Cons y r \rightarrow x = y \/ mem x r \mid Nil \rightarrow false end
```

no variants, WHY3 requires structural decrease

• inductive predicates (useful for transitive closures):

Declarations are organized in modules

• purely logical modules are called theories

Declarations are organized in modules

purely logical modules are called theories

A module M₁ can be

- used (use) in a module M_2
 - symbols of M₁ are shared
 - axioms of M₁ remain axioms
 - lemmas of M₁ become axioms
 - goals of M₁ are ignored

Declarations are organized in modules

purely logical modules are called theories

A module M₁ can be

- used (use) in a module M_2
- cloned (clone) in a module M_2
 - declarations of M_1 are copied or instantiated
 - axioms of M₁ remain axioms or become lemmas
 - lemmas of M₁ become axioms
 - goals of M₁ are ignored

Declarations are organized in modules

purely logical modules are called theories

A module M_1 can be

- used (use) in a module M_2
- cloned (clone) in a module M₂

Cloning can instantiate

- an abstract type with a defined type
- an uninterpreted function with a defined function
- a val with a let

Declarations are organized in modules

purely logical modules are called theories

A module M_1 can be

- used (use) in a module M_2
- cloned (clone) in a module M₂

Cloning can instantiate

- an abstract type with a defined type
- an uninterpreted function with a defined function
- a val with a let

One missing piece coming soon:

instantiate a used module with another module

Exercises

http://why3.lri.fr/ejcp-2022