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Software is hard. — DoNALD KNUTH
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Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification
1. provide a program with a specification: a mathematical model

2. build a formal proof showing that the code respects the specification
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Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification
1. provide a program with a specification: a mathematical model

2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949

u =1

for r =0 ton -1 do
vV i=u

for s =1 to r do
u:=u-+yv
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Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification
1. provide a program with a specification: a mathematical model

2. build a formal proof showing that the code respects the specification
First proof of a program: Alan Turing, 1949

First theoretical foundation: Floyd-Hoare logic, 1969
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Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification
1. provide a program with a specification: a mathematical model

2. build a formal proof showing that the code respects the specification
First proof of a program: Alan Turing, 1949
First theoretical foundation: Floyd-Hoare logic, 1969

First grand success in practice: metro line 14, 1998

tool: Atelier B, proof by refinement
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Some other major success stories

Flight control software in A380, 2005

safety proof: the absence of execution errors
tool: Astrée, abstract interpretation

proof of functional properties
tool: Caveat, deductive verification

Hyper-V — a native hypervisor, 2008
tools: VCC + automated prover Z3, deductive verification

CompCert — verified C compiler, 2009
tool: Coq, generation of the correct-by-construction code

selL4 — an OS micro-kernel, 2009
tool: Isabelle/HOL, deductive verification

CakeML — verified ML compiler, 2016
tool: HOL4, deductive verification, self-bootstrap
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1. Tool of the day
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WHY3 in a nutshell

file.mlw

WhyML
smt.drv VCgen

NG

transform/translate

prmt/run

— 7/ \\

Coq Alt-Ergo  CVC4 Z3 etc.
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WHY3 in a nutshell

WHYML, a programming language
* type polymorphism ¢ variants
* limited support for higher order
* pattern matching ° exceptions
* break, continue, and return

* ghost code and ghost data (cAv 2014)

file.mlw
* mutable data with controlled aliasing
| g . . WhyML
contracts ¢ loop and type invariants VCen

smt.drv

NG

transform/translate

prmt/run

— 7/ \\

Coq Alt-Ergo CVC4 Z3 etc
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WHY3 in a nutshell

WHYML, a programming language WHYML, a specification language
* type polymorphism ° variants * polymorphic & algebraic types
* limited support for higher order * limited support for higher order
* pattern matching ° exceptions * inductive predicates
* break, continue, and return (FroCos 2011) (CADE 2013)
* ghost code and ghost data (cAv 2014) .
file.mlw
* mutable data with controlled aliasing
tracts * loop and type invariant WML

* contracts * loop and type invariants

smt.drv VCgen

NG

transform/translate

prmt/run

— 7/ \\

Coq Alt-Ergo CVC4 Z3 etc
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WHY3 in a nutshell

WHYML, a programming language WHYML, a specification language
* type polymorphism ° variants * polymorphic & algebraic types
* limited support for higher order * limited support for higher order
* pattern matching ° exceptions * inductive predicates
* break, continue, and return (FroCos 2011) (CADE 2013)
* ghost code and ghost data (cAv 2014) .
file.mlw
* mutable data with controlled aliasing
tracts * loop and type invariant WML
* contracts * loop and type invariants
smt.drv VCgen
WHY3, a program verification tool \ /core
* VC generation using WP or fast WP transform/t,ansme
* 70+ VC transformations (= tactics)
prmt/run

* support for 25+ ATP and ITP systems ‘// \\

(Boogie 2011) (ESOP 2013) (VSTTE 2013) Coq  Alt-Ergo  CVC4 73 etc.
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WHY3 out of a nutshell

Three different ways of using WHY3

® as alogical language
® a3 convenient front-end to many theorem provers

® as a programming language to prove algorithms

® see examples in our gallery
http://toccata.lri.fr/gallery/why3.en.html

® as an intermediate verification language

® Java programs: Krakatoa (Marché Paulin Urbain)
C programs: Frama-C (Marché Moy)
Ada programs: SPARK 2014 (Adacore)
probabilistic programs: EasyCrypt (Barthe et al.)
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Example: maximum subarray problem

let maximum_subarray (a: array int): int
ensures { forall 1 h: int. 0 <= 1 <= h <= length a —=> sum a 1 h <= result }
ensures { exists 1 h: int. @ <= 1 <= h <= length a /\ sum a 1 h = result }
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Kadane’s algorithm

T T I AR
(x .o, | max | *)
(e |### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall 1 h: int. 0 <= 1 <= h <= length a —=> sum a 1 h <= result }

ensures { exists 1 h: int. @ <= 1 <= h <= length a /\ sum a 1 h = result }
let ref max = 0 in
let ref cur = 0 in

for i = 0 to length a - 1 do

cur += a[i];

if cur < 0 then cur <- 0;
if cur > max then max <- cur
done;

max
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Kadane’s algorithm

T T I AR
(x .o, | max | *)
(e |### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall 1 h: int. 0 <= 1 <= h <= length a —=> sum a 1 h <= result }
ensures { exists 1 h: int. @ <= 1 <= h <= length a /\ sum a 1 h = result }

let ref max = 0 in
let ref cur = 0 in
let ghost ref cl = 0 in

for i = 0 to length a - 1 do
invariant { forall 1: int. 0 <= 1 <= i ->suma 1l i <= cur }
invariant { @ <= cl <= i /\ sum a cl i = cur }

cur += a[i];
if cur < 0 then begin cur <- 0; cl <- i+l end;
if cur > max then max <- cur

done;

max
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Kadane’s algorithm

T T I AR
(x .o, | max | *)
(e |### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall 1 h: int. 0 <= 1 <= h <= length a —=> sum a 1 h <= result }
ensures { exists 1 h: int. @ <= 1 <= h <= length a /\ sum a 1 h = result }

let ref max = 0 in
let ref cur = 0 in
let ghost ref cl = 0 in
let ghost ref lo = 0 in
let ghost ref hi = 0 in
for i = 0 to length a - 1 do
invariant { forall 1: int. 0 <= 1 <= i ->suma 1l i <= cur }
invariant { @ <= cl <= i /\ sum a cl i = cur }
invariant { forall 1 h: int. 0@ <= 1l <= h <=i -> sum a 1l h <= max }
invariant { @ <= lo <= hi <=1 /\ sum a lo hi = max }
cur += a[i];
if cur < 0 then begin cur <- 0; cl <- i+l end;
if cur > max then begin max <- cur; lo <- cl; hi <- i+l end
done;
max
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Fle Tools View Help

Why3 proof session

Status | Theories/Goals

Time

Task ./maxsum_solution.miw

< 7 ../maxsum_solution.miw
< [ Kadane
~ L[] vC maximum_subarray [VC for maxim
< B split_ve

b L] 0[loop invariant init]

b L] 1[loop invariant init]
2{loop invariant init]
3{loop invariant init]
4 [index in array bounds]

5 [loop invariant preservation

nHohohn

6 [loop invariant preservation

1
1
7 [loop invariant preservation]
1

8 [loop invariant preservation

9 [loop invariant preservation]
10 [loop invariant preservation]
8 cveals

6 [loop invariant preservation]

7 [loop invariant preservation]

]

8 [loop invariant preservation]
9 [loop invariant preservation]

[mpns
N

1 [postcondition]
2 [postcondition]
3 [out of loop bounds]

000000000000 0HO000000000000000

[t
[t
[t
L0
L] 20 [loop invariant preservation]
[t
[
[

0.03

26 et maximum subarray (a
27 ensures { forall | h:

_array int): int

28 ensures { exists 1 h:
29 =
30 let maxsum = ref 0 in

31 let curmax = ref 0 in

32 let ghost lo = ref 0 in
33 let ghost hi = ref 0 in
34 let ghost cl = ref 0 in

int, 0 <= 1 <=h <= length a /\ suna 1 h

> suma Uh <= result }
= result }

length a

35 for i =0 to a.length - 1 do

6 tnvariant { forall 1

37 invariant { 0 <= !cl

38 invariant { forall 1 h:

39 invariant { 0 <= !To <= thi <= i /\ suma !lo thi

40 curmax += a[i];

41 if tcurmax < O then begin curmax :

42 if !curmax > !maxsum then begin maxsum := = i+l end
43 done;

44 imaxsum

0/0/0 [

Messages | Log | | Prover output | c
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2. Program correctness
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t o= ..,—1,0,1,....,42, ...

| true | false
| ulv]w
| xlylz
| topt
| opt

op = +|—|x
| =1#I<I>]<
o ATVI=

Pure terms

integer constants
Boolean constants
immutable variable
dereferenced pointer
binary operation

unary operation

arithmetic operations
arithmetic comparisons

Boolean connectives

® two data types: mathematical integers and Booleans

® well-typed terms evaluate without errors (no division)

® evaluation of a term does not change the program memory

20/171



Program expressions

e = skip do nothing
t pure term
X<t assignment
e;e sequence

|

|

|

| letv=eine binding

| let ref x =e in e allocation
| if t then e else e conditional
|

while t do e done loop

three types: integers, Booleans, and unit
references (pointers) are not first-class values
expressions can allocate and modify memory

well-typed expressions evaluate without errors
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skip

tr

Xt < I

€unit 5 €g

let v = er in g

let ref x; = e; in e
if tpoor then e; else e

while tpoo1 do eynit done

T = int | bool and ¢ == 7 | unit
references (pointers) are not first-class values
expressions can allocate and modify memory

well-typed expressions evaluate without errors

Typed expressions

unit
T

unit

unit
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X< e

if e then e; else e
if e; then &

e && e

er || e

Syntactic sugar

letv=-e in x+v

let v =¢e in if v then ey else &
if e; then e, else skip

if ey then e else false

if ey then true else e
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Example

let ref sum = 1 in
let ref count = 0 in
while sum < n do
count < count + 1;
sum < sum + 2 * count + 1
done;
count

What is the result of this expression for a given n?
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Example — ISQRT

let ref sum = 1 in
let ref count = 0 in
while sum < n do
count < count + 1;
sum < sum + 2 * count + 1
done;
count

What is the result of this expression for a given n?

Informal specification:
® at the end, count contains the truncated square root of n

® for instance, given n = 42, the returned value is 6
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Hoare triples

A statement about program correctness:
{P}e{Q}
P precondition property
e expression
Q postcondition property

What is the meaning of a Hoare triple?

{P}e{Q} if we execute e in a state that satisfies P,
then the computation either diverges
or terminates in a state that satisfies Q

This is partial correctness: we say nothing about termination.
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Examples

Examples of valid Hoare triples for partial correctness:
o {x=1} x<x+2 {x=38}
o {x=y} x+y {result =2y}
e {Jv.x=4v} x+42 {3w. result =2w}

{true} while true do skip done {|[false]}
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Examples

Examples of valid Hoare triples for partial correctness:
o {x=1} x<x+2 {x=38}
o {x=y} x+y {result =2y}
® {Jv.x=4v} x+42 {Iw. result =2w}

 {true} while true do skip done {|[false]}

® after this loop, everything is trivially verified
® ergo: not proving termination can be fatal
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Examples

Examples of valid Hoare triples for partial correctness:
o {x=1} x<x+2 {x=38}
o {x=y} x+y {result =2y}
® {Jv.x=4v} x+42 {Iw. result =2w}

 {true} while true do skip done {|[false]}

® after this loop, everything is trivially verified
® ergo: not proving termination can be fatal

In our square root example:

{?} 1ISQRT {7}
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Examples

Examples of valid Hoare triples for partial correctness:
o {x=1} x<x+2 {x=38}
o {x=y} x+y {result =2y}
® {Jv.x=4v} x+42 {Iw. result =2w}

 {true} while true do skip done {|[false]}

® after this loop, everything is trivially verified
® ergo: not proving termination can be fatal

In our square root example:

{n>0}ISQRT {7}

30/171



Examples

Examples of valid Hoare triples for partial correctness:
o {x=1} x<x+2 {x=38}
o {x=y} x+y {result =2y}
® {Jv.x=4v} x+42 {Iw. result =2w}

 {true} while true do skip done {|[false]}

® after this loop, everything is trivially verified
® ergo: not proving termination can be fatal

In our square root example:

{n>0} ISQRT {result® < n< (result+1)?}
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3. Weakest precondition calculus
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Weakest preconditions

How can we establish the correctness of a program?
One solution: Edsger Dijkstra, 1975

Predicate transformer WP(e, Q)
e expression
Q postcondition
computes the weakest precondition P such that {P} e {Q}
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Intuition of WP

X 3xxxy { xiseven }
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Intuition of WP

{ 3xy is even } X 3xxxy {xiseven }
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Intuition of WP

{ 3xy is even } X 3xxxy {xiseven }

{Qls] } X4 s {alx]}
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{ 3xy is even }

{Qls] }

X< 3xx*xy

X< S

if ¢ then
else

€1
€

Intuition of WP

{xiseven }

{alx]}

{a}
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Intuition of WP

{ 3xy is even } X 3xxxy {xiseven }

{Qls] } X4 s {alx]}

if ¢ then eQ {Q}
else eQ
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Intuition of WP

{ 3xy is even } X 3xxxy {xiseven }

{Qls] } X4 s {alx]}

if ¢ then PierQ {Q}
else P,ex Q
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Intuition of WP

{ 3xy is even } X 3xxxy {xiseven }

{Qls] } X4 s {alx]}

{if ¢ then P, if ¢ then PierQ {Q}
else P, } else P,er Q
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Intuition of WP

{ 3xy is even } X 3xxxy {xiseven }

{Qls] } X4 s {alx]}

{if ¢ then P, if ¢ then PierQ {Q}
else P, } else P,er Q

if ¢ then e {a}
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Intuition of WP

{ 3xy is even } X 3xxxy {xiseven }

{Qls] } X4 s {alx]}

{if ¢ then P, if ¢ then PierQ {Q}
else P, } else P,er Q

if ¢ then PeQ {Q}
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Intuition of WP

{ 3xy is even } X 3xxxy {xiseven }

{als] } X s {Q[x]}

{if ¢ then P, if ¢ then PierQ {Q}
else P, } else P,er Q

{if ¢ then P if ¢ then PeQ {Q}
else Q }
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{ 3xy is even }

{Qls] }

{if ¢ then P,
else P, }

{if ¢ then P
else Q }

X< 3xx*xy

X< S

if ¢ then Pye;Q
else P,ex Q

if ¢ then PeQ

while ¢ do e done

Intuition of WP

{xiseven }

{alx]}

{a}

{a}

{a}
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Intuition of WP

{ 3xy is even } X 3xxxy {xiseven }

{als] } X s {Q[x]}

{if ¢ then P, if ¢ then PierQ {Q}
else P, } else P,er Q

{if ¢ then P if ¢ then PeQ {Q}
else Q }

? while ¢ do edone {Q}
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WP(skip, Q)

WP(t,Q)

WP(x ¢ t,0)

WP(es ; e2,Q)

WP(let v = e in &,Q)
WP(let ref x = ey in &, Q)

WP(if t then ey else &,Q)

Definition of WP

Q

Q[result — t]

Q[x — t]

WP(e;, WP(e2, Q))
WP(er,WP(ez, Q)[v — result])
WP(er, WP(e2, Q)[x — result])

(t = WP(e1, Q) A
(—'t — WP(eg, Q))
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Swimming up the waterfall

if odd g then r <~ r +p;

p<p+p;
g < half g
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if odd g then

r<r+p

else

skip;

pp+p;

g < half q

Swimming up the waterfall
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if odd g then
rr+p
else
skip;
p<—p+p;

g < half q
Qlp, q, ]

Swimming up the waterfall
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if odd g then
rr+p
else
skip;
p<—p+p;

Q[p, half q, r]
g < half g

Qlp, q, ]

Swimming up the waterfall
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Swimming up the waterfall

if odd g then
r<—r+p
else

skip;
Qlp + p, half g, r]
p+ p+p;
Q[p, half q, r]
g < half g
Qlp, g, r]
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Swimming up the waterfall

if odd g then

r<r+p
Qlp + p, half g, r]
else

skip;
Qlp + p, half g, r]
p< p+p;
Qlp, half g, r]
g < half g
Qlp, g, r]
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Swimming up the waterfall

if odd g then
Qlp + p, half q, r +p]
r<r+p
Qlp + p, half q, r]
else
Qlp + p, half q, r]
skip;
Qlp + p, half g, r]
P p+p;
Qlp, half g, r]
g < half g
Qlp, g, r]
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Swimming up the waterfall

(odd g — Q[p + p, half g, r +p]) A
(—odd g — Q[p + p, half q,r])
if odd g then
Qlp + p, half q, r +p]
r<r+p
Qlp + p, half q, r]
else
Qlp + p, half q, r]
skip;
Qlp + p, half g, r]
p< p+p;
Qlp, half g, r]
g < half g
Qlp, g, r]
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Definition of WP: loops

WP(while t do e done,Q) =

3J : Prop. some invariant property J
JA that holds at the loop entry
VX1 Xk and is preserved

(JA t— WP(e,J)) A after a single iteration,
(JA-t— Q) is strong enough to prove Q

Xi1...Xx references modified in e

We cannot know the values of the modified references after n iterations
® therefore, we prove preservation and the post for arbitrary values

® the invariant must provide all the needed information about the state
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Definition of WP: annotated loops

Finding an appropriate invariant is difficult in the general case
® this is equivalent to constructing a proof of Q by induction

We can ease the task of automated tools by providing annotations:

WP(while t invariant J do e done, Q) =
JA

VX1 oo Xk
(JA t— WP(e,J)) A
(JA-t— Q)

X1...Xx references modifiedin e

the given invariant J
holds at the loop entry,
is preserved after

a single iteration,
and suffices to prove Q
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Russian Peasant Multiplication

let ref p=ain

let ref g = b in

let ref r =0 in

while g >0 invariant J[p,q,r] do
if odd g then r < r+p;
p<—p+p;
g < half g

done;

r

result = axb
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Russian Peasant Multiplication

let ref p=ain
let ref g =>bin
let ref r =0 in
while g >0 invariant J[p,q,r] do
if odd g then r<r +p;
p<—p+p;
g < half g
done;
r=axb
r
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Russian Peasant Multiplication

let ref p=ain

let ref g = b in

let ref r =0 in

while g >0 invariant J[p,q,r| do
if odd g then r <~ r +p;
p<—p+p;
q < half g

Jlp, g, ]
done;
r=a=xb
r
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Russian Peasant Multiplication

let ref p=ain
let ref g = b in
let ref r =0 in
while g >0 invariant J[p,q,r| do
(odd g — J[p + p, half g, r + p]) A
(—odd g— J[p + p, half g, r])
if odd g then r <~ r +p;
pp+p;
g < half q
Jlp, q,r]
done;
r=a=xb
r
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Russian Peasant Multiplication

let ref p=ain
let ref g = b in
let ref r =0 in
Jlp,q,r] A
Vpqr. Jlp,q,r] —
(g>0—
(odd g — Jp + p, half g, r + p]) A
(—odd g — J[p + p, half g, r])) A
(<0 —
r=axb)
while g >0 invariant J[p,q,r] do
if odd g then r<r +p;
p<—p+p;
g < half g
done ;
r
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Russian Peasant Multiplication

Ja,b,0] A
Vpgqr. Jlp,q,r] —
(>0 —
(odd g — J[p + p, half q,r +p]) A
(—odd g— J[p + p, half g, r])) A
(g<0—
r = asxb)
let ref p=ain
let ref g = b in
let ref r =0 in
while g >0 invariant J[p,q,r] do
if odd g then r<r +p;
p<—p+p;
g < half g
done ;
r
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Soundness of WP

Theorem
For any e and Q, the triple {WP(e, Q) } e {Q} is valid.

Can be proved by induction on the structure of the program e

w.r.t. some reasonable semantics (axiomatic, operational, etc.)

Corollary
To show that { P} e {Q} is valid, it suffices to prove P — WP(e, Q).

This is what WHY3 does.
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4. Run-time safety
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Run-time errors

Some operations can fail if their safety preconditions are not met:
® arithmetic operations: division par zero, overflows, etc.
® memory access: NULL pointers, buffer overruns, etc.

® assertions
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Run-time errors

Some operations can fail if their safety preconditions are not met:
® arithmetic operations: division par zero, overflows, etc.
® memory access: NULL pointers, buffer overruns, etc.

® assertions

A correct program must not fail:

{P}e{Q} if we execute e in a state that satisfies P,
then there will be no run-time errors
and the computation either diverges
or terminates normally in a state that satisfies Q
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Assertions

A new kind of expression:

e .=
assert R fail if R does not hold

The corresponding weakest precondition rule:
WP(assert R,Q) = RAQ = RA(R—Q)

The second version is useful in practical deductive verification.
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Unsafe operations

We could add other partially defined operations to the language:
e .

t div t Euclidean division

alt] array access

and define the WP rules for them:
WP(t; div£,Q) = ©#0 A Qresult — (t div b)]
WP(a[t],Q)

0<t<|al A Q[result— a[t]]

But we would rather let the programmers do it themselves.
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5. Functions and contracts
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Subroutines

We may want to delegate some functionality to functions:

letf(viity)...(va:Tp) : ¢ € = e defined function
valf(vi:ity) ... (vniTh) : ¢ € abstract function

Function behaviour is specified with a contract:

% = requires P precondition
writes xq...Xg modified global references
ensures Q postcondition

Postcondition Q may refer to the initial value of a global reference: x°

let incr_r (v: int): int writes r
ensures result=r° A r=r°+v
=let u=r in r<u+v ; u
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Subroutines

We may want to delegate some functionality to functions:

letf(viity)...(va:Tp) : ¢ € = e defined function
valf(vi:ty)...(vp:1Th) : ¢ € abstract function

Function behaviour is specified with a contract:

% = requires P precondition
writes xq...Xg modified global references
ensures Q postcondition

Postcondition Q may refer to the initial value of a global reference: x°

Verification condition (X are all global references mentioned in f):

VC(letf...) = VXV.P— WP(e,Q)[X° +— X]
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GOSUB
One more expression:
e =
| ft...t function call

and its weakest precondition rule:
WP(f t ... 1,Q) = PV 1] A
(VXVresult. [V — £,X° = w] = Q)[W > X]

P precondition of f X references modified in f
postcondition of f X references used in f
formal parameters of f w fresh variables

<t O

Modular proof: when verifying a function call,
we only use the function’s contract, not its code.
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Examples

let max (x y: int) : int
ensures { result >= x /\ result >=vy }
ensures { result = x \/ result = y }
= if x >=y then x else y

val ref r : int (* declare a global reference x)

let incr_r (v: int) : int

requires { v > 0 }

writes {r}

ensures { result =old r /\ r=o0ld r + v }
= let u=rin

r<—u+v;

u
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6. Total correctness: termination
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Termination
Problem: prove that the program terminates for every
initial state that satisfies the precondition.

It suffices to show that
® every loop makes a finite number of iterations

® recursive function calls cannot go on indefinitely

Solution: prove that every loop iteration and every recursive call
decreases a certain value, called variant, with respect
to some well-founded order.

For example, for signed integers, a practical well-founded order is

i<j = i<jANO0<j
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Loop termination

A new annotation:

e = ...
| while t invariant J variant t-< do e done

The corresponding weakest precondition rule:

WP(while t invariant J variant s-< do e done, Q) =
JA
VXy ... Xk
(JA t— WP(e,JAs=<w)[w+s]) A
(JA-t— Q)

Xi1...Xx references modified in e

w a fresh variable (the variant at the start of the iteration)
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Termination of recursive functions

A new contract clause:

letrecf (vi:t)...(Va:Tn) : G
requires Ps
variant s-<
writes X
ensures Q
=e

For each recursive call of f in e:
WP(f bty ... t5,Q) = PV 1] A s[VT] < s[X—X°] A

(VX Vresult. [V — £,X° — w] — Q)[W — X]

s[V 1] variant at the call site
s[X v X°| variant at the start of f

references used in f

%
w fresh variables
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Mutual recursion

Mutually recursive functions must have
® their own variant terms

® a common well-founded order
Thus, if f calls g t; ... t,, the variant decrease precondition is

sglVg = ] < s¢[¥ — X°]

Vg formal parameters of g
sglVg— ] variant of g at the call site
s([X — X°]  variant of f at the start of f
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7. Exceptions

79/171



Exceptions as destinations

Execution of a program can lead to
® divergence — the computation never ends

® total correctness ensures against non-termination
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Exceptions as destinations

Execution of a program can lead to
® divergence — the computation never ends

® total correctness ensures against non-termination

® abnormal termination — the computation fails

® partial correctness ensures against run-time errors

® normal termination — the computation produces a result

® partial correctness ensures conformance to the contract

® exceptional termination — produces a different kind of result
® the contract should also cover exceptional termination
® each potential exception E gets its own postcondition Qg

® partial correctness: if E is raised, then Qg holds
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Exceptions as destinations

Execution of a program can lead to
® divergence — the computation never ends

® total correctness ensures against non-termination

® abnormal termination — the computation fails

® partial correctness ensures against run-time errors

® normal termination — the computation produces a result

® partial correctness ensures conformance to the contract

® exceptional termination — produces a different kind of result

exception Not_found

val binary_search (a: array int) (v: int) : int
requires { forall i j. 0 < i1 < j < length a — al[i] < al[j] }
ensures { 0 < result < length a A a[result] = v }

raises { Not_found — forall i. @ < i < length a — a[i] # v }
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Our language keeps growing:

raise E

e =
|
| tryewithE — e

WP handles two postconditions now:

WP(skip,Q,Qg) =

Just another semicolon

raise an exception
catch an exception
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| tryewithE — e catch an exception

WP handles two postconditions now:

WP(skip,Q,Qe) = Q

WP(raise E,Q, QE) Qe
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Just another semicolon
Our language keeps growing:

raise E raise an exception

e =
| tryewithE — e catch an exception

WP handles two postconditions now:
WP(skip,Q,Qe) = Q
WP(raise E,Q,Qe) = Qe

WP(es; ,Q,Qe) = WP(e1,WP(e2,Q,Qk),Qk)

90/171



Just another semicolon

Our language keeps growing:

raise E raise an exception

e =
| tryewithE — e catch an exception

WP handles two postconditions now:

WP(skip,Q,Qs) = Q
WP(raise E,Q,Qe) = Qe
WP(es; €,Q,Qs) = WP(e, WP(e2,Q,Qc),Qk)
WP(try e; with E — e,Q,Qe) = WP(er,Q, WP(e2,Q,Qk))

91/171



Just another let-in

Exceptions can carry data:

e = ...
| raise Et raise an exception
| tryewithEv — e  catch an exception

Still, all needed mechanisms are already in WP:
WP(t,Q,Qs) = Qresult— t]
WP(raise Et,Q,Qe) = Qg[result — ¢]

WP(let v = ey in €,Q,Qc) =
WP(er,WP(e2,Q, Qe)[v +— result], Qg)

WP(try ey with Ev — €,0Q,Qg) =
WP(er,Q, WP(e2,Q, Qg)[v — result])
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Functions with exceptions
A new contract clause:

let f(viity)... (Va:iTp) : G
requires Ps
writes X
ensures Q
raises E — Qg
=e

Verification condition for the function definition:
VC(let f.. ) = VXV.P;f— WP(e, Q, QE,‘)[)_(D — )?]
Weakest precondition rule for the function call:

WP(fty...t,Q,Qe) = PVi>t] A
(VXVresult. [V — £,X° — W] — Q)[w — X] A
(VX Vresult. Qg [V > ,%° > W] — Qe)[w — X]
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8. Ghost code
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Ghost code: example

Compute a Fibonacci number using a recursive function in O(n):

let rec aux (a b n: int): int
requires { @ <= n }
requires { }
ensures {

variant { n }
= if n = 0 then a else aux b (a+b) (n-1)

let fib_rec (n: int): int
requires { 0 <= n }
ensures { result = fib n }
=aux 0 1n

(x fib_rec 5 = aux 0 1 5 =aux 114 =aux123-=
aux 2 3 2 aux 351 aux 58 0 =5 x)
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Ghost code: example

Compute a Fibonacci number using a recursive function in O(n):

let rec aux (a b n: int): int
requires { @ <= n }

requires { exists k. 0 <= k /\ a = fib k /\ b = fib (k+1) }
ensures { exists k. 0 <= k /\ a = fib k /\ b = fib (k+1) /\
result = fib (k+n) }

variant { n }
= if n = 0 then a else aux b (a+b) (n-1)

let fib_rec (n: int): int
requires { 0 <= n }
ensures { result = fib n }
=aux 0 1n

(x fib_rec 5 = aux 0 1 5 =aux 114 =aux123-=
aux 2 3 2 aux 351 =aux 580 =5 %)
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Ghost code: example

Instead of an existential we can use a ghost parameter:

let rec aux (a b n: int) (ghost k: int): int
requires { 0 <= n }
requires { 0 <= k /\ a = fib k /\ b = fib (k+1) }
ensures { result = fib (k+n) }
variant { n }

= if n = 0 then a else aux b (a+b) (n-1) (k+1)

let fib_rec (n: int): int
requires { 0 <= n }
ensures { result = fib n }
=aux 01 no
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The spirit of ghost code
Ghost code is used to facilitate specification and proof

= the principle of non-interference:

We must be able to eliminate the ghost code
from a program without changing its outcome.
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The spirit of ghost code
Ghost code is used to facilitate specification and proof

= the principle of non-interference:

We must be able to eliminate the ghost code
from a program without changing its outcome.

Consequently:
® material code cannot read ghost data
® if k is ghost, then (k + 1) is ghost, too
® ghost code cannot modify material data
® if r is a material reference, then r <— ghost k is forbidden

® ghost code cannot alter the control flow of material code
® if cis ghost,then if ¢ then ... and while ¢ do ... are ghost

® ghost code cannot diverge
® we can prove while true do skip done; assert false
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Ghost code in WHYML

Can be declared ghost:
® function parameters

val aux (a b n: int) (ghost k: int): int
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Ghost code in WHYML

Can be declared ghost:
® function parameters

val aux (a b n: int) (ghost k: int): int

® record fields and variant fields

type queue 'a = { head: list 'a; (* get from head *)
tail: list 'a; (% add to tail %)
ghost elts: list 'a; (* logical view %) }
invariant { elts = head ++ reverse tail }
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Ghost code in WHYML

Can be declared ghost:
® function parameters

val aux (a b n: int) (ghost k: int): int

® record fields and variant fields

type queue 'a = { head: list 'a; (* get from head *)
tail: list 'a; (% add to tail %)
ghost elts: list 'a; (* logical view %) }
invariant { elts = head ++ reverse tail }

® |ocal variables and functions

let ghost x = qu.elts in ...
let ghost rev_elts qu = qu.tail ++ reverse qu.head
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Ghost code in WHYML

Can be declared ghost:
® function parameters

val aux (a b n: int) (ghost k: int): int

® record fields and variant fields

type queue 'a = { head: list 'a; (* get from head *)
tail: list 'a; (% add to tail %)
ghost elts: list 'a; (* logical view %) }
invariant { elts = head ++ reverse tail }

® |ocal variables and functions

let ghost x = qu.elts in ...
let ghost rev_elts qu = qu.tail ++ reverse qu.head

® program expressions

let x = ghost qu.elts in ...
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How it works?

The material world and the ghost world are built from the same bricks.

Explicitly annotating every ghost expression would be impractical.
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lFe:g
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How it works?
The material world and the ghost world are built from the same bricks.
Explicitly annotating every ghost expression would be impractical.
Solution: Tweak the type system and use inference (of course!)
lFe:g-€-gm
¢ — int, bool, unit (also: lists, arrays, etc.)

€ — potential side effects

modified references r<—..., letrefr=...1in
raised exceptions raise E, try ... with E —
divergence unproved termination

g — is the expression material or ghost?

m — is the expression’s result material or ghost?

111/171



Who'’s ghost and who’s not?

Any variable or reference is considered ghost
® if explicitly declared ghost: let ghost v¥ =6 % 6 in ...
® f initialised with a ghost value: let ref r =v9+ 6 in ...

® if declared inside a ghost block: ghost (let x% = 42 in...)
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Who'’s ghost and who’s not?

Any variable or reference is considered ghost
® if explicitly declared ghost: let ghost v¥ =6 % 6 in ...
® f initialised with a ghost value: let ref r =v9+ 6 in ...
® if declared inside a ghost block: ghost (let x% = 42 in...)

1. term t isghost = t contains a ghost variable or reference
2. r<tisghost = r isaghostreference (Q: what about t?)
3. skip is not ghost

4. raise E is not ghost
unless we pass a ghost value with E: raise E v9

unless E is expected to carry ghost values: exception E (ghost int)
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Who'’s ghost and who’s not?

An expression e has a material effect iff
- e modifies a material reference
- e diverges (= not proved to terminate)

- e is not ghost and raises an exception
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Who'’s ghost and who’s not?

An expression e has a material effect iff
- e modifies a material reference
- e diverges (= not proved to terminate)

- e is not ghost and raises an exception

5. e1;e / letv=-e in e / let ref v =€y in e isghost =

- e is ghost and ey has no material effects (Q: what if it has some?)

- ey or ey is ghost and raises an exception (Q: why does it matter?)
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Who'’s ghost and who’s not?

An expression e has a material effect iff
- e modifies a material reference
- e diverges (= not proved to terminate)

- e is not ghost and raises an exception

5. e1;e / letv=-e in e / let ref v =€y in e isghost =

- e is ghost and ey has no material effects (Q: what if it has some?)

- ey or ey is ghost and raises an exception (Q: why does it matter?)

6. try ey with E — e / try e; with Ev — e, isghost =
- eq is ghost

- ep is ghost and raises an exception
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Who'’s ghost and who’s not?

An expression e has a material effect iff
- e modifies a material reference
- e diverges (= not proved to terminate)

- e is not ghost and raises an exception

7. if t then ey else e> isghost =

- t is ghost (unless e; or e; is assert false)
- eq is ghost and e, has no material effects
- e is ghost and ey has no material effects

- ey or ey is ghost and raises an exception
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Who'’s ghost and who’s not?

An expression e has a material effect iff
- e modifies a material reference
- e diverges (= not proved to terminate)

- e is not ghost and raises an exception

7. if t then ey else e> isghost =

- t is ghost (unless e; or e; is assert false)
- eq is ghost and e, has no material effects
- e is ghost and ey has no material effects

- ey or ey is ghost and raises an exception

8. while t do e done isghost = t or e is ghost
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Who'’s ghost and who’s not?

9. functioncall ft ...t isghost =

- function f is ghost or some argument {; is ghost
unless f expects a ghost parameter at that position
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Who'’s ghost and who’s not?

9. functioncall ft ...t isghost =

- function f is ghost or some argument {; is ghost
unless f expects a ghost parameter at that position

When typechecking a function definition
® we expect the ghost parameters to be explicitly specified

® then the ghost status of every subexpression can be inferred
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Who'’s ghost and who’s not?

9. functioncall ft ...t isghost =

- function f is ghost or some argument {; is ghost
unless f expects a ghost parameter at that position

When typechecking a function definition
® we expect the ghost parameters to be explicitly specified

® then the ghost status of every subexpression can be inferred

Erasure [-] erases ghost data and turns ghost code into skip.

Theorem™: Erasure preserves the material part of program semantics.

e-u — c-u e-u — o
! Lo
[e] - ful —* fel-[u'] [e] - [u] = e
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Lemma functions

General idea: a function f X requires P;ensures Q; that
® produces no results
® has no side effects
® terminates

provides a constructive proof of Vx.P; — Q¢

= a pure recursive function simulates a proof by induction
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Lemma functions

General idea: a function f X requires P;ensures Q; that
® produces no results
® has no side effects
® terminates

provides a constructive proof of Vx.P; — Q¢

= a pure recursive function simulates a proof by induction

function rev_append (1 r: list 'a): list 'a = match 1 with
| Cons a 1l —> rev_append 11 (Cons a r) | Nil -> r end

let rec lemma length_rev_append (1 r: list 'a) variant {1}
ensures { length (rev_append 1 r) = length 1 + length r }

match 1 with Cons a 11 —> length_rev_append 11 (Cons a r)
| Nil => () end
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Lemma functions

function rev_append (1 r: list 'a): list 'a = match 1 with
| Cons a 11 —> rev_append 11 (Cons a r) | Nil -> r end

let rec lemma length_rev_append (1 r: list 'a) variant {1}
ensures { length (rev_append 1 r) = length 1 + length r }

match 1 with Cons a 11 —> length_rev_append 11 (Cons a r)
| Nil => () end

® by the postcondition of the recursive call:

length (rev_append 11 (Cons a r)) = length 11 + length (Cons a r)

® by definition of rev_append:

rev_append (Cons a 1l) r = rev_append 1l (Cons a r)

® by definition of length:

length (Cons a 11) + length r = length 11 + length (Cons a r)
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9. Mutable data
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Records with mutable fields

module Ref
type ref 'a = { mutable contents : 'a } (* as in 0Caml x)
function (!) (r: ref 'a) : 'a = r.contents

let ref (v: 'a) = { contents = v }

let (!) (r: ref 'a) = r.contents

let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end
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Records with mutable fields

module Ref
type ref 'a = { mutable contents : 'a } (* as in 0Caml x)
function (!) (r: ref 'a) : 'a = r.contents

let ref (v: 'a) = { contents = v }

let (!) (r: ref 'a) = r.contents

let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end

® can be passed between functions as arguments and return values
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module Ref
type ref 'a = { mutable contents : 'a } (* as in 0Caml x)
function (!) (r: ref 'a) : 'a = r.contents

let ref (v: 'a) = { contents = v }

let (!) (r: ref 'a) = r.contents

let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end

® can be passed between functions as arguments and return values

® can be created locally or declared globally

® let r = ref 0 in while !r <42 do r := Ir + 1 done
® val gr : ref int
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Records with mutable fields

module Ref
type ref 'a = { mutable contents : 'a } (* as in 0Caml x)
function (!) (r: ref 'a) : 'a = r.contents

let ref (v: 'a) = { contents = v }

let (!) (r: ref 'a) = r.contents

let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end

® can be passed between functions as arguments and return values

® can be created locally or declared globally

® let r = ref 0 in while !r <42 do r := Ir + 1 done
® val gr : ref int

® can hold ghost data
® let ghost r = ref 42 in ... ghost (r := -=!r)
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Records with mutable fields

module Ref
type ref 'a = { mutable contents : 'a } (* as in 0Caml x)
function (!) (r: ref 'a) : 'a = r.contents

let ref (v: 'a) = { contents = v }

let (!) (r: ref 'a) = r.contents

let (:=) (r: ref 'a) (v: 'a) = r.contents <- v
end

® can be passed between functions as arguments and return values

® can be created locally or declared globally
® let r = ref 0 in while !'r <42 do r := !r + 1 done
® val gr : ref int

® can hold ghost data
® let ghost r = ref 42 in ... ghost (r := -!r)

® cannot be stored in recursive structures: no list (ref ’a)
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Records with mutable fields

module Ref
type ref 'a = { mutable contents : 'a } (* as in 0Caml x)
function (!) (r: ref 'a) : 'a = r.contents

let ref (v: 'a) = { contents = v }
let (!) (r: ref 'a) = r.contents
let (:=) (r: ref 'a) (v: 'a) = r.contents <- v

end

can be passed between functions as arguments and return values

can be created locally or declared globally
® let r = ref 0 in while !'r <42 do r := !r + 1 done
® val gr : ref int

can hold ghost data
® let ghost r = ref 42 in ... ghost (r := -!r)

cannot be stored in recursive structures: no list (ref 'a)

’

cannot be stored under abstract types: no set (ref ’a)
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The problem of alias

let double_incr (sl s2: ref int): unit writes {sl1,s2}
ensures { !'sl =1+ old !'sl /\ !s2 =2 + old !s2 }
=5l =1+ !sl; s2 :=2 + !s2

let wrong () =
let s = ref 0 in
double_incr s s; (x write/write alias x*)
assert { Is=1/\!s =21} (x in fact, !s = 3 %)
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The problem of alias

let double_incr (sl s2: ref int): unit writes {sl1,s2}
ensures { !'sl =1+ old !'sl /\ !s2 =2 + old !s2 }
=5l =1+ !sl; s2 :=2 + !s2

let wrong () =
let s = ref 0 in
double_incr s s; (x write/write alias x*)
assert { Is=1/\!s =21} (x in fact, !s = 3 %)

val g : ref int

let set_from_g (r: ref int): unit writes {r}
ensures { !r=1g+ 171}
=r:=1!1g+1

let wrong () =
set_from_g g; (* read/write alias *)
assert { lg=1g+ 11} (x contradiction x)
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WP vs. aliases

The standard WP rule for assignment:
WP(x < 42,Q[x,y,z]) = Q[42,y,z]
But if x and z are two names for the same reference

WP(x <—42,Q[x,y,z]) shouldbe Q[42,y,42]

Problem: Know, statically, when two values are aliased.
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WP vs. aliases

The standard WP rule for assignment:
WP(x < 42,Q[x,y,z]) = Q[42,y,z]
But if x and z are two names for the same reference
WP(x <—42,Q[x,y,z]) shouldbe Q[42,y,42]

Problem: Know, statically, when two values are aliased.

Solution: Tweak the type system and use inference (of course!)
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WP with aliases

Every mutable type carries an invisible identity token — a region:

x @ ref p int y i ref wint z:ref pint
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WP with aliases

Every mutable type carries an invisible identity token — a region:
x : ref p int y i ref wint z:ref p int

Now, some programs typecheck no more: if ... then x elsey : 7
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WP with aliases

Every mutable type carries an invisible identity token — a region:
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ML-style type inference reveals the identity of each subexpression
® formal parameters and global references are assumed to be separated
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WP with aliases

Every mutable type carries an invisible identity token — a region:

x @ ref p int y i ref wint z:ref pint
Now, some programs typecheck no more: if ... then x elsey : 7
...fortunately: WP(let r = x ormaybe y in r < 42, Q[x,y,z]) =7?

ML-style type inference reveals the identity of each subexpression
® formal parameters and global references are assumed to be separated

Revised WP rule for assignment: WP(x; < t,Q) = Qo

where & replaces in Q each variable y : 7[7] with an updated value
® an alias of x can be stored inside a reference inside a record inside a tuple
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Can we do more?

Poor man’s resizable array:

let resa = ref (Array.make 10 0) in
(x resa : ref p (array p; int) x)
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Type mismatch: We break the regions < aliases correspondence!
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Can we do more?

Poor man’s resizable array:

let resa ref (Array.make 10 0) in
(x resa : ref p (array p; int) x)

Let’s resize it:

let olda = !resa (* olda : array p; int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa := newa (* newa : array pp, int =)

Type mismatch: We break the regions < aliases correspondence!

Change the type of resa? What about if ... then resa := newa?
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Yes, we can!

Let everybody keep their type:

let resa

(* resa :

let olda
let newa

ref (Array.make 10 0) in
ref p (array py int) x)
'resa (* olda : array p; int *) in
Array.make (2 * length olda) 0 in

Array.blit olda 0 newa 0 (length olda);
resa.contents <- newa (x newa : array P, int x)

newa, olda — the witnesses of the type system corruption
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Yes, we can!

Let everybody keep their type:

let resa

(* resa :

let olda
let newa

ref (Array.make 10 0) in
ref p (array py int) x)
'resa (* olda : array p; int *) in
Array.make (2 * length olda) 0 in

Array.blit olda 0 newa 0 (length olda);
resa.contents <- newa (x newa : array P, int x)

newa, olda — the witnesses of the type system corruption

What do we do with undesirable witnesses? — A.G. CAPONE
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Yes, we can!

Let everybody keep their type:

let resa

(* resa :

let olda
let newa

ref (Array.make 10 0) in
ref p (array py int) x)
'resa (* olda : array p; int *) in
Array.make (2 * length olda) 0 in

Array.blit olda 0 newa 0 (length olda);
resa.contents <- newa (x newa : array P, int x)

Type-changing expressions have a special effect:

writes p - resets pq, P2

e1 ; e iswell-typed = in every free variable of e,
every region reset by ey occurs under a region written by e;
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Yes, we can!

Let everybody keep their type:

let resa

(* resa :

let olda
let newa

ref (Array.make 10 0) in
ref p (array py int) x)
'resa (* olda : array p; int *) in
Array.make (2 * length olda) 0 in

Array.blit olda 0 newa 0 (length olda);
resa.contents <- newa (x newa : array P, int x)

Type-changing expressions have a special effect:

writes p - resets pq, P2

e1 ; e iswell-typed = in every free variable of e,
every region reset by ey occurs under a region written by e;

Thus: resa and its aliases survive, but olda and newa are invalidated.
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Killer effect

ey ; eo iswell-typed = in every free variable of ey,
every region reset by ey occurs under a region written by ey
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Killer effect

ey ; eo iswell-typed = in every free variable of ey,
every region reset by ey occurs under a region written by ey

The reset effect also expresses freshness:

If we create a fresh mutable value and give it region p,
we invalidate all existing variables whose type contains p.
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The reset effect also expresses freshness:

If we create a fresh mutable value and give it region p,
we invalidate all existing variables whose type contains p.

Effect union (for sequence or branching):
Xz survives & LI& & xg survives both £ and é&,.
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Killer effect

ey ; eo iswell-typed = in every free variable of ey,
every region reset by ey occurs under a region written by ey

The reset effect also expresses freshness:

If we create a fresh mutable value and give it region p,
we invalidate all existing variables whose type contains p.

Effect union (for sequence or branching):
Xz survives & LI& & xg survives both £ and é&,.

Thus:
® the reset regions of £ and &, are added together,

® the written regions of €; invalidated by &,_; are ignored.
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To sum it all up
The standard WP calculus requires the absence of aliases!

® at least for modified values

® WHY3 relaxes this restriction using static control of aliases
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The user must indicate the external dependencies of abstract functions:
® yval set_from_g (r: ref int): unit writes {r} reads {g}

® otherwise the static control of aliases does not have enough information

159/171



To sum it all up

The standard WP calculus requires the absence of aliases!
® at least for modified values

® WHY3 relaxes this restriction using static control of aliases

The user must indicate the external dependencies of abstract functions:
® yval set_from_g (r: ref int): unit writes {r} reads {g}

® otherwise the static control of aliases does not have enough information

For programs with arbitrary pointers we need more sophisticated tools:
® memory models (for example, “address-to-value” arrays)

® handle aliases in the VC: separation logic, dynamic frames, etc.
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Abstract specification

Aliasing restrictions in WHYML

=> certain structures cannot be implemented

Still, we can specify them and verify the client code

type array 'a = private { mutable ghost elts: map int 'a;
length: int }
invariant { 0 <= length }

® all access is done via abstract functions (private type)

® the type invariant is expressed as an axiom
® but can be temporarily broken inside a program function
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Abstract specification

type array 'a = private { mutable ghost elts: map int 'a;
length: int }
invariant { 0 <= length }
val ([]) (a: array 'a) (i: int): 'a
requires { 0 <= i < a.length }
ensures { result = a.elts[i] }
val ([]<-) (a: array 'a) (i: int) (v: 'a): unit
requires { 0 <= i < a.length }
writes {a}l
ensures { a.elts = (old a.elts)[i <- v] }

function get (a: array 'a) (i: int): 'a = a.elts[i]

® the immutable fields are preserved — implicit postcondition
® the logical function get has no precondition
® its result outside of the array bounds is undefined
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10. Modular programming considered useful

163/171



Declarations

types
® abstract: type t
® synonym: type t = list int
® variant: type list 'a = Nil | Cons 'a (list 'a)

functions / predicates

® uninterpreted: function f int: int
® defined: predicate non_empty (1: list 'a) = 1 <> Nil
® inductive: inductive path t (list t) t = ...

axioms / lemmas / goals
® goal G: forall x: int, x >= 0 —> x¥x >= 0

program functions

® abstract: val ([]) (a: array 'a) (i: int): 'a
® defined: let mergesort (a: array elt): unit = ...

exceptions
® exception Found int
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Specification language of WHYML

programs and specifications use the same data types

match-with-end, if-then-else, let-in
are accepted both in terms and formulas

functions et predicates can be defined recursively:

predicate mem (x: 'a) (l: list 'a) = match 1 with
Cons yr->x=y \/ mem x r | Nil —> false end

no variants, WHY3 requires structural decrease

inductive predicates (useful for transitive closures):

inductive sorted (l: list int) =
| SortedNil: sorted Nil
| SortedOne: forall x: int. sorted (Cons x Nil)
| SortedTwo: forall x y: int, 1: list int.
x <=y —> sorted (Cons y 1) —>
sorted (Cons x (Cons y 1))
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Modules

Declarations are organized in modules

® purely logical modules are called theories

166/171



Modules

Declarations are organized in modules

® purely logical modules are called theories

A module M; can be
® used (use) in a module Mp
® symbols of M; are shared
® axioms of M; remain axioms
® |emmas of My become axioms
® goals of M; are ignored
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Modules

Declarations are organized in modules

® purely logical modules are called theories

A module M; can be

® used (use) in a module My
® cloned (clone) in a module My
® declarations of My are copied or instantiated
® axioms of My remain axioms or become lemmas
® |emmas of M; become axioms
® goals of M; are ignored
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Modules

Declarations are organized in modules

® purely logical modules are called theories

A module M; can be
® used (use) in a module My

® cloned (clone) in a module My

Cloning can instantiate
® an abstract type with a defined type
® an uninterpreted function with a defined function

® aval witha let
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Modules

Declarations are organized in modules

® purely logical modules are called theories

A module M; can be
® used (use) in a module My

® cloned (clone) in a module My

Cloning can instantiate
® an abstract type with a defined type
® an uninterpreted function with a defined function

® aval witha let

One missing piece coming soon:

® instantiate a used module with another module
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Exercises

http://why3.lri.fr/ejcp-2022

171/171


http://why3.lri.fr/ejcp-2022

