From Software Testing to Intelligent Validation of Autonomous Systems

Du Test Logiciel à la Validation Intelligente des Systèmes Autonomes

Ecole des Jeunes Chercheurs en Programmation 2023

Arnaud Gotlieb Simula Research Laboratory Norway

Course Overview

- Software Testing Introduction
- Code-based Testing
- Testing of Autonomous Systems
- Open Challenges in Software Testing

A Historical Perspective on Software Testing

Grace Hooper

1960-80: Testing = Debugging

What have we learnt since then?

Causality: Error → Fault → Failure

In fact, 3 distinct activities:

- * Failure detection
- * Fault localization
- * Error correction

(Testing purpose) (Debugging purpose) (Debugging purpose)

1980-90: Testing = Destruction

"Testing is the process of executing a program with the intent of finding errors" [G. Myers The Art of Software Testing 1979]

Consequently:

validation team \neq development team

But, there is no specification to test the program against

That dogmatic position was progressively given up!

1990-2000: Testing = Fault Prevention

"To convince that a program conforms to its <u>specifications</u> by using static or dynamic analysis techniques"

- Program analysis → Control: Property checking Before execution

Program execution → Testing: Result evaluation
 After execution

Visual 1998

🦔 deref2 - Microsoft Visual C++ - [deref2.cpp]	_ 8 ×
∐ <mark>⊉</mark> <u>F</u> ile <u>E</u> dit ⊻iew Insert <u>P</u> roject <u>B</u> uild <u>T</u> ools <u>W</u> indow <u>H</u> elp	_ 8 ×
Image: Image	
<pre>workspace 'deref2: 1 projec Workspace 'deref2: 1 projec Workspace 'deref2: 1 projec deref2 files deref2 ccpp fullic: int a; *p; Resource Files ReadMe.txt fullic: int main() p->a = 3; return 0; } deref2.ccp winclude "stdafx.h" Class C {</pre>	
Compiling Compiling deref2.cpp Linking deref2.exe - 0 error(s), 0 warning(s) Build (Debug) Find in Files 1) Find in Files 2) Results /	▲ ▼ ▲
Ln 1, Col 15 REC C	OL OVR READ
🖹 Démarrer 🐼 deref2 - Microsoft 🥸 XnView [gb] 🗱 deref2 🎼 deref2 👫 deref2	🏹 📝 22:45
2023 EJCP	8

Visual 2017

🧭 deref1 - Microsoft Visual C++ [design] - deref.cpp			
Eichier Edition Affichage Projet Générer Déboguer O	utils Fenêtre <u>?</u>		
👔 - 🏣 - 🚔 📓 🥼 🛍 🛍 🗠 4 - 4 - 4 - 1 - Debug - 💋			
Page de démarrage deref.cpp		↓ × Explorateur de solutions - deref1 ₽ ×	
Globales)	▼ = etamain		
class A	deref1.exe	Solution 'deref1' (1 projet)	
Image: Second state Image: Second state Image: Second state Image: Second state	deref1.exe a rencontré un problème et doit fermer. Nous vous prions de nous excuser pour le désagrément encouru.	Source Files	
$ = \frac{1}{2} + \frac$	Si vous étiez en train d'effectuer un travail en cours, les informations sur lesquelles vous travailliez peuvent avoir été perdues.	Header Files	
<pre> {</pre>	Veuillez signaler ce problème à Microsoft. Nous avons créé un rapport d'erreurs que vous pouvez nous envoyer. Nous traiterons ce rapport confidentiellement et anonymement.		
	Pour afficher les données de ce rapport d'erreurs, Cliquez ici.		
	Débogage Envoyer le rapport d'erreurs Ne pas envoyer	Explorateur 🗠 Affichage d	
Eichier Edition Affichage Aller à Marque-pages Outils Fenêtre Aide			
Précédent Suivant Actualiser Arrêter			
Accueil Marque-pages			
Compilation deref.cpp Édition des liens en cours			
Résultats			
Le journal de génération a été enregistré à l'emplacement "file://c:\Agotlieb\gotlieb\Recherche\C++ ex\deref1\Debug\B			
deref1 - 0 erreur(s), 0 avertissement(s)			
🛛 🍊 🖉 🖉 🚽 🖉 😌 🖉 🖉 Poste de tr	ic 🔤 "c:\agotlieb\ 🔤 "c:\agotlieb\ 🔤 N	1ozilla 🛛 🛛 🖪 🚫 🔂 🔣 🛒 😚 14:09	

2000-2010 : Testing = Model-Based Testing (MBT)

MBT added-value: Build a (test) model instead of test cases to validate/verify the program

2010-2020: Testing = Agile Testing/Test-Driven Dev. (TDD)

Writing tests instead of a specification model is considered more agile

2020-20..: Testing = Intelligent Testing / Al-driven Testing

Al is revolutionizing the way software systems are developed and tested

Terminology

(IEEE Standard Glossary of SE, BCS's standard for Softw. Testing)

- **Validation:** "The process of evaluating software at the end of software development to ensure compliance with intented usage" -- Are we developing the right product ?
- Verification: "The process of determining whether the products of a given phase of the software development process fulfill the requirements established during the previous phase" -- Are we developing the product right ?

Testing: "Evaluating software by observing its execution"

Program Testing: Our Definition

- Testing = Execute a program P to detect faults, which are non-conformities w.r.t. the program specification F
- Looking for counter-examples:

$$\exists ?X \ tq P(X) \neq F(X)$$

Program Correction: Fundamental Limitation

Impossibility to demonstrate the correction of a program in the general case as a consequence of **the undecidability of the Halting problem of a Turing machine**

"Program Testing can be used to prove the presence of bugs, but never their absence" [Dijkstra 74]

PS : Expert developer → ~1 fault / 10 LOC ~163 faults / 1000 instructions [B. Beizer Software Testing Techniques 1990]

Test Process

Oracle Problem : How to verify the computed outcomes?

In Theory:

- By predicting the expected result
- By using a formulae extracted from the specification
- By using another program
- By using known properties about multiple executions of the program

In Practice :

- Approximative predictions (due to floating-point computations,...)
- Unknown formula (because Program = Formulae)
- Non bug-free oracles and incorrect properties

Test Input Selection Problem How to choose inputs for testing?

A. Black-box Testing: Using sepcifications to generate test inputs

B. Code-Based Testing: Using the program code and structure

A. Black-box Testing

Using a specification model:

- Informal (Partition Testing, Boundary Testing, ...)
- Half-formal (Use cases, Sequence diagrams, UML/OCL, Causes/effects graphs...)
- **Formal** (Algebraic specifications, B Machines, Transition systems, IOLTS, ...)

B. Code-Based Testing

- Using a model computed from the source code of the program under test
- model = Internal representation of the program structure
- Heavy usage of **Graph Theory**, in particular, coverage techniques

Code-Based Testing is indispensable (1)

<u>Specification:</u> Return the product of i by j

--> OK

```
prod(int i, int j )
   int k ;
   if( i==2 )
       k := i << 1 ;
   else
      (...)
   return k ;
```

Code-Based Testing is indispensable! (2)

<u>Specifications :</u> renvoie le produit de i par j

Undetected fault if only black-box testing is used par patch $\rightarrow \mathbf{k} := \mathbf{j} \ll \mathbf{1}$ prod(int i, int j) int k ; if(i==2) k := i << 1 ; else (...) return k ;

Bibliography: Reference Books

ARTIFICIAL INTELLIGENCE AND SOFTWARE TESTING

Building systems you can trust

Adam Leon Smith, Rex Black, James Davenport, Joanna Olszewska, Jeremias Rößler, Jonathon Wright

Bibliography: Journals

2023

Technique et science

Informatiques

10010

Course Overview

- Software Testing Introduction
- Code-based Testing
- Testing of Autonomous Systems
- Open Challenges in Software Testing

1. TESTING CRITERIA

Internal Representations

Program Structure Abstractions

- Control Flow Graph (CFG)

- Def/Use Graph
- Program Dependence Graph

Control Flow Graph (CFG)

Oriented and connex graph (N, A, e, s) where

N: set of nodes =

Instructions block sequentially executed

E: set of arcs, N x N relation, Some arcs are labelled with $\{T, F\}$ = Possible branching of the control flow

e: Program input node

s: Program output node

Control Flow Graph (CFG): Example

```
double P(short x, short y) {
   short w = abs(y);
   double z = 1.0;
   while ( w != 0 )
        z = z * x;
        w = w - 1;
       }
   if ( y<0 )
       z = 1.0 / z;
  return(z);
```


Structural Criterion: All_nodes | All_statements

<u>Motivation:</u> To cover all program instructions at least once during testing

<u>Def:</u> A subset C of program paths of the CFG (N,A,e,s) satisfies *All_nodes* iff $\forall n \in N$, $\exists C_i \in C$ such that n is a node of C_i

Example: Here, only one path is necessary a-b-c-b-d-e-f [6/6 nodes]

Structural Criterion: All_arcs | All_decisions

<u>Motivation:</u> To cover all program decisions at least once during testing

<u>Def</u>: A subset C of paths of the CFG (N,A,e,s) satisfies <u>All_arcs</u> iff $\forall a \in A$, $\exists C_i \in C$ such that a is an arc of C_i

Example: Here, 2 paths are necessary a-b-c-b-d-e-f [6/7 arcs] a-b-d-f [3/7 arcs]

Structural Criterion: All_simple_paths | All_k_paths Motivation: To cover all execution paths which do not iterate more than once in loops or do not exceed a a given length Example: Here, 4 simple paths are necessary h to cover All_simple_paths a-b-d-f С a-b-d-e-f a-b-c-b-d-f \cap a-b-c-b-d-e-f Example: 2 paths are necessary to cover All_5_paths (Paths with less than 5 instruction blocs) e a-b-d-f a-b-d-e-f 2023 EJCP 35

Structural Criterion: All_paths

- Def: A set C of paths of the CFG (N,A,e,s)
 satisfies all_paths if C contains all paths from
 e to s
 - Here, it is **impossible** as there is an ∞ of paths. Note also that some paths may be **infeasible**!

All_paths is stronger than All_k_paths
All_k_paths is stronger than All_arcs
All_arcs is stronger than All_nodes

Executed Path: exec (P,X)

Principle:

x executes a **single path** of the CFG (no concurrency, no dynamic bindings)

<u>Def:</u> Sequence of CFG nodes, not necessarily finite, followed by the execution flow when P is feeded with X as input

Examples:

exec(P, (0, 0)) = a-b-d-f $exec(P, (3, 2)) = a-b-(c-b)^{2}-d-f$

P(short x,y) a / [/]short w= abs(y) double z = 1.0w != 0 b z= z * x)w= w-1 y<0 z=1.0 / z e return(z 37

Infeasible Path Problem

Let c be a CFG path of P, Does X exist such that c=exec(P,X) ?

Here, a-b-d-e-f is infeasible!

Weyuker 79 Determining if a node, an arc, or a path of the CFG is feasible is undecideable in the general case

<u>Sketch of proof</u>: Reduction to the Halting problem of a Turing Machine

P(short x,y) a /short w= abs(y) double z = 1.0w != 0 b z= z * x w= w-1 y<0 z=1.0 / z e return(z

Exercise:

Find the infeasible paths of the program

Measuring code coverage

- 3 distinct techniques
 - Instrumenting source code
 - + Easy to implement
 - + Powerful as everything regarding executions can be recorded
 - Add untrusted code in trusted source code
 - Instrumenting binary code
 - + Do not modify source code
 - Difficult to implement
 - Use a debugger
 - + Do not modify source code
 - Specific to each compiler

2. DECISION TESTING

Condition / Decision in a Program

(Logical predicate in a control structure of the program)

Notation: Dec is the truth value of the decision

Some Testing Criteria associated to Decisions

- **1. Decision Criterion (DC):** A=1,B=1,C=0 Dec=1 A=0,B=0,C=0 - Dec=0
- **2. Condition Criterion (CC)**: A=1,B=1,C=0 Dec=1 A=0,B=0,C=1 - Dec=0
- 3. Modified Condition/Decision Criterion (MC/DC)
- 4. Multiple Condition/Decision Criterion: 23=8 test cases

Modified Condition/Decision Criterion (1)

<u>Objective</u>: Démontrer l'action de chaque condition sur la valeur de vérité de la décision

<u>Principe</u> : for each condition, find 2 test cases which flip Dec when all the other conditions are fixed

Modified Condition/Decision Criterion (2)

- for A A=0, B=1,C=1 -- Dec=0 A=1, B=1,C=1 -- Dec=1
- for B A=1, B=1,C=0 -- Dec=1 A=1, B=0,C=0 -- Dec=0
- for C A=1, B=0,C=1 -- Dec=1 A=1, B=0,C=0 -- Dec=0

Here, 5 test cases are sufficient for covering MC/DC !

Exercise: Can we do better?

Modified Condition/Decision Criterion (3)

<u>Property:</u> If n = #conditions then

covering MC/DC requieres at least n+1 TC and max 2n TC

 $n+1 \le #Test cases \le 2*n$

Coupled Conditions: Flipping the truth value of one condition impacts the truth value of another one

When there is no coupled conditions, the minimum (n+1) can always be reached [Ref ?]

Links with object-code coverage?

Covering MC/DC \Rightarrow covering all the decisions of the object-code But

Covering MC/DC covering all the decisions of the object-code

Covering all paths of the object-code \Rightarrow covering MC/DC But Covering all paths of the object-code \checkmark covering MC/DC

From the Galileo development standard

Structural coverage	DAL A	DAL B	DAL C	DAL D	DAL E
Statement coverage (source code)	100%	100%	100%	90%	N/A
Statement coverage (object code)	100%	N/A	N/A	N/A	N/A
Decision coverage (source code)	100%	100%	N/A	N/A	N/A
Modified Condition & Decision Coverage (Source code)	100%	N/A	N/A	N/A	N/A

3. Automatic Test Input Generation

Most Used Techniques

- Exhaustive Testing
- Testing by Sampling
- Random Testing (a.k.a. Fuzzing)
- Symbolic Execution

Exhaustive Testing

- Exhaustive sampling of the program input space
- Selection of all inputs and execution of the program
- Equivalent to a correction proof (when the execution terminates)

Exhaustive Testing: Limitations and Advantages

- Usually untractable!

- Interesting estimation of the size of the input search space, against a test objective

Test Objective Example: To reach a selected instruction in the code

Testing by Sampling

Weak version of exhaustive testing

Examples :

 $\{0, 1, 2, 2^{32}-1\}$ pour un ush

{NaN, -INF, -3.40282347e+38, -1.17549435e-38, -1.0, -0.0,...}

for a 32-bit floating-point number (IEEE 754)

Random Testing

Uniform probability distribution on the program input space

(i.e., each test input is equi-probable)

- Using **pseudo-random generators**
- Require an **automated oracle** (e.g., Metamorphic Testing)
- Stopping criteria must be fixed (number of test inputs, covering a structural criterion, time-out, etc.)

Selection Criterion C

- Process of test inputs selection
- Sometimes, it induces a « partition » over the program input space (e.g., All_paths of P)

Deterministic Coverage of Criterion C

Selection of at least one element per subdomain of the partition

Based on the uniformity assomption that a single input is sufficient to test the whole subdomain

Probabilistic Coverage of Criterion C

Random selection of test inputs according to a distribiution profile

Is Random Testing Efficient to Cover a Criterion?

 $p \{x \in A\}$: probability that a random test input x covers an element A

RT is well adapted to test the program robustness, but hill-conditioned to test corner-cases

Symbolic execution

Symbolic state: <Path, State, Path Conditions>

Path= n_i -..- n_j is a path expression of the CFGState= $<v_i, \phi_i >_{v \in Var(P)}$ where ϕ_i is an algebraic expression over XPath Cond. = $c_1,...,c_n$ where c_i is a condition over X

X denotes symbolic variables associated to the program inputs and Var(P) denotes internal variables

Symbolic execution

Computing Symbolic States

<Path, State, PC> is computed by induction over each statement of Path

When the Path conditions are unsatisfiable then Path is non-feasible and reciprocally (i.e., symbolic execution captures the concrete semantics)

<u>ex</u>: <a-b-d-e-f,{...}, abs(Y)=0 ∧ Y<0 >

Forward vs backward analysis:

Forward \rightarrow interesting when states are needed Backward \rightarrow saves memory space, as complete states are not computed

Backward analysis

Constraint Solving in Symbolic Evaluation

 Mixed Integer Linear Programming approaches (i.e., simplex + Fourier's elimination + branch-and-bound)

> CLP(R,Q) in **ATGen** Ipsolve in **DART/CUTE**

(Meudec 2001) (Godefroid/Sen et al. 2005)

□ SMT-solving (= SAT + Theories)

STP in EXE and KLEE Z3 in PEX and SAGE

(Cadar et al. 2006) (Tillmann and de Halleux 2008)

Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler Disolver in SAGE EUCLIDE ECLAIR (Williams et al. 2005) (Godefroid et al. 2008) **(Gotlieb 2009)** (Bagnara Bagnara Gori 2013)

Problems for Symbolic Evaluation Techniques

- \rightarrow Combinatorial explosion of paths
- \rightarrow Symbolic execution constrains the shape of dynamically allocated objects

constrains t to:

 \rightarrow Floating-point computations $\stackrel{_{\sim}}{\rightarrow}$

F Charreteur, B Botella, A Gotlieb. *Modelling dynamic memory management in constraintbased testing*. Journal of Systems and Software. Elsevier, 2009 float foo(float x) {
 float y = 1.0e12, z ;
1. if(x < 10000.0)
2. z = x + y;
3. if(z > y)
4. ...

Is the path 1-2-3-4 feasible?

Solution: build a dedicated constraint solver over the floats !

B Botella, A Gotlieb, C Michel. Symbolic execution of floating-point computations. STVR 2006 R Bagnara, M Carlier, R Gori, A Gotlieb. Symbolic path-oriented test data generation for floating-point programs. **IEEE ICST 2013**

2023

Dynamic Symbolic Evaluation (DSE)

- Symbolic execution of a <u>concrete execution</u> (also called <u>concolic</u> execution)
- > By using input values, feasible paths only are (automatically) selected
- Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005),
PEX (Tillman et al. Microsoft 2008),
SAGE (Godefroid et al.2008)
KLEE (Cadar et al. 2008)

Dynamic Symbolic Execution for All-k-paths

1. Draw an input at random, execute it and record path conditions

a 2. Flip a non-covered decision and solve the constraints to find a new input x

Example (1)

f(int i)
{
 j = 2;
 if(i ≤ 16)
 j = j * i;
 if(j > 8)
 j = 0;
 return j;
}

Example (2)

Random imput generation

(i = 15448)

→ Path 1-3-5

Example (3)

```
f( int i )
{
    j = 2;
    if( i ≤ 16 )
        j = j * i;
    if( j > 8)
        j = 0;
    return j;
}
```

Try to solve

j₁=2 i > 16

j₁ > 8

Unsatisfiable, therefore Path 1-3-4 is non-feasible
Example (4)

int i)

if(i \leq 16)

if(j > 8)

return j;

j = 0;

j = 2;

Bactrack and try to solve j₁=2 i <= 16 j = j * i; 3 → (i = 2) -- Path 1-2-3-5 f 4

f(

}

{

Example (5)

int i) f(Bactrack and try to solve { j = 2; $j_1 = 2$ if($i \leq 16$) i <= 16 j = j * i; $j_2 = j_1^* i$ if(j > 8)i = 0; $j_2 > 8$ return j; f →(i = 10) -- Path 1-2-3-4-5 All-paths covered with three test 5 data (i = 15448, i = 2, i = 10)

Dynamic Symbolic Execution: Discussion

 □ Requires to bound the number of iterations in loops
 → suitable for automatic test data generation for the All-k-paths criterion

Performance of the method depends on the first initial random input

Numerous extensions to handle pointers as input parameters, logical decisions, function calls, bit-to-bit operations

4. Metamorphic Testing

Non-testable programs

[Weyuker TSE 82]

← No (complete and correct) oracle available

Because

- No formal specifications, incomplete specifications;
- Expected results too difficult to compute;
- □ Inferred/generalized from a set of instances;
- Depending on the execution environment;

Typical examples:

Third-party library functions, RESTful APIs

Complex mathematical functions (using floating-point computations) Trained ML models

Optimization programs (optimal planners, assignment, scheduling, etc.) Reactive and self-adaptive programs

Metamorphic Testing

Metamorphic Relation (MR) of a program P: User-specified input-output relation about P

Let's start with a trivial example:

P : a program that implements the *gcd* of 2 integers Problem: P(1309, 693) = ?

 $\underline{\mathsf{MR:}} \quad \forall \mathsf{u}, \, \forall \mathsf{v}, \, gcd(\mathsf{u}, \mathsf{v}) = gcd(\mathsf{v}, \mathsf{u})$

Hence, if $P(1309, 693) \neq P(693, 1309)$ then verdict = Fail

* Note that many other programs than gcd satisfy P(u, v) = P(v, u) so,

MRs are necessary, but not sufficient to establish program correctness

** Note also that there are many other possible MRs

<u>MR:</u> $\forall u, \forall v, gcd(p.u, p.v) = p. gcd(u, v)$ if p is a prime number

 $\underline{MR:} \quad \forall u, \forall v \quad gcd(u, v) = gcd(v, u-v) \text{ if } u > v$

Graph Theory

How to test a program P that computes a shortest path in an undirected graph G?

shortestPath(G, a, b) = ?

if P(G, a, b) = a-e1-e2-e3-b and P(G, b, a) = b-g1-g2-a then verdict = Fail

<u>MR:</u> $\forall a, \forall b | shortestPath(G, a, b) | = | shortestPath(G, b, a) |$

* Note that MRs can be based on the usage of other functions (possibly under test)
** Note also that MRs can involve more than one additional computation

<u>MR:</u> |shortestPath(G, a, b) $| \le |$ shortestPath(G, a, c)|+ |shortestPath(G, c, b)|

Search Engines

if search("tom" OR "jerry") returns less items than search("tom" AND "jerry") then verdict = Fail

<u>MR:</u> \forall k1, \forall k2 |search(k1 OR k2)| ≥ |search(k1 AND k2)|

x: (k1 OR k2), y: (k1 AND k2) implies $|search(x)| \ge |search(y)|$

Main Usages

1. To generate follow-up test cases

2. To create partial oracles

Strategies for Finding Metamorphic Relations

1) Driven by transformation over input-data

Which transformations t over the inputs x do not change the outcome of P?

i.e., find t such that P(x) = P(t(x))

Transformations t: add, remove or reorder elements, perturb inputs, shift or rotate images, ...

2) Driven by output-relation

Given two executions of P, what kind of relations do exist between these executions ?

i.e., Given x,y, P(x), P(y), find R_o(P(x), P(t(x))

Relations R_o: less_or_equal, length, subset, equivalent,...

3) Driven by domain-knowledge

Which invariant properties P has to satisfy ?

Applications of MT (1/3)

Testing online search engines (Flickr, Youtube, Spotify,...)

Testing compilers

Testing bioinformatics programs (Genes Regulat. Net. simulation)

IEEE TSE 2017 Metamorphic Testing of RESTful Web APIs

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE Transactions on Software Engineering

Sergio Segura, José A. Parejo, Javier Troya, and Antonio Ruiz-Cortés

Compiler Validation via Equivalence Modulo Inputs

Vu Le Mehrdad Afshari Zhendong Su

Department of Computer Science, University of California, Davis, USA {vmle, mafshari, su}@ucdavis.edu

BMC Bioinformatics

Methodology article

Open Access

BioMed Central

PLDI'14

An innovative approach for testing bioinformatics programs using metamorphic testing

Tsong Yueh Chen¹, Joshua WK Ho^{*2,3}, Huai Liu¹ and Xiaoyuan Xie¹

Address: ¹Centre for Software Analysis and Testing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, ²School of Information Technologies, The University of Sydney, Sydney, NSW 2006, Australia and ³NICTA, Australian Technology Park, Eveleigh, NSW 2015, Australia

E-mail: Tsong Yueh Chen - tychen@swin.edu.au; Joshua WK Ho* - joshua@it.usyd.edu.au; Huai Liu - hliu@swin.edu.au; Xiaoyuan Xie - xxie@swin.edu.au; *Corresponding author

Published: 19 January 2009 BMC Bioinformatics 2009, 10:24 doi: 10.1186/1471-2105-10-24

Received: 29 May 2008 Accepted: 19 January 2009

Applications of MT (2/3)

Testing code obfuscators, testing web interfaces, penetration testing Published in final edited form as: *Computer (Long Beach Calif).* 2016 June ; 49(6): 48–55. doi:10.1109/MC.2016.176.

Metamorphic Testing for Cybersecurity

Tsong Yueh Chen,

Department of Computer Science and Software Engineering, Swinburne University of Technology, Australia

Fei-Ching Kuo, Department of Computer Science and Software Engineering, Swinburne University of Technology, Australia

Testing simple ML models

Testing and Validating Machine Learning Classifiers by Metamorphic Testing[☆] JSS 2011

Xiaoyuan Xie^{a,d,e,*}, Joshua W. K. Ho^b, Christian Murphy^c, Gail Kaiser^c, Baowen Xu^e, Tsong Yueh Chen^a

Applications of MT (3/3)

Testing DNNs in self-driving cars

Generating driving scenes

DeepTest: Automated Testing of **Deep-Neural-Network-driven Autonomous Cars**

ICSE'18

Yuchi Tian University of Virginia yuchi@virginia.edu

Suman Jana Columbia University suman@cs.columbia.edu

Kexin Pei Columbia University kpei@cs.columbia.edu

Baishakhi Ray University of Virginia rayb@virginia.edu

DeepRoad: GAN-based Metamorphic Autonomous Driving System Testing

Mengshi Zhang¹, Yuqun Zhang^{2*}, Lingming Zhang³, Cong Liu³, Sarfraz Khurshid¹ ¹ University of Texas at Austin ² Southern University of Science and Technology **ASE'18**

³ University of Texas at Dallas

mengshi.zhang@utexas.edu, zhangyq@sustc.edu.cn, lingming.zhang@utdallas.edu, cong@utdallas.edu, khurshid@ece.utexas.edu

2017 IEEE/ACM 2nd International Workshop on Metamorphic Testing (MET)

Testing autonomous drones

Metamorphic Model-based Testing of Autonomous Systems

Mikael Lindvall Fraunhofer CESE 5825 Univ. Research Ct College Park, Maryland mikli@fc-md.umd.edu

Adam Porter Fraunhofer CESE 5825 Univ. Research Ct College Park, Maryland aporter@fc-md.umd.edu

Gudjon Magnusson Fraunhofer CESE 5825 Univ. Research Ct College Park, Maryland GMagnusson@fc-md.umd.edu

Christoph Schulze Fraunhofer CESE 5825 Univ. Research Ct College Park, Maryland cschulze@fc-md.umd.edu

MT: Pros/Cons

- + Automated powerful testing method
- + Multiple MRs can be combined altogether
- + Lightweight method, easy to setup and deploy (once MRs have been identified)
- + Successful in testing ML models

- Designing MRs often require domain knowledge
- MRs have different faultrevealing capabilities
- Shallow underlying theory, lack of foundations
- Not yet used for systematically testing critical programs

Remaining Challenges

- □ Lack of foundational theory
- Need for automatic finding and selection of MRs
- MT for performance (execution time, energy consumption) is not yet sufficiently developed
- MT of Collaborative Robots

First Synthesis

- In the industrial world, software systems are mostly validated with software testing (no model checking, no correction proof)
- Code-based testing (Testing criteria, MCDC) has a long-term tradition and it has been popularized with dynamic symbolic execution (DSE) which combine coverage and SE
- Metamorphic Testing is crucial and fruitful technique to deal with the oracle problem
- Numerous tools, methods and approaches exist. That background cannot be ignored when engaging new research works
- □ Still, open challenges remain...

Course Overview

- Software Testing Introduction
- Code-based Testing
- Testing of Autonomous Systems
- Open Challenges in Software Testing

Autonomous Software-Systems

- Systems which have a certain degree of self-decision capabilities, e.g., self-driving cars, industrial robots, smart transportation systems,...
- Systems with increased capabilities of planning (what, how), scheduling (when, who) and executing complex functions, with limited human intervention, managing unexpected events, such as faults or hazards
- Not equal to automated systems, which have limited capacity to learn and adapt to unexpected events
- In robotics and automated driving, the main focus for autonomy is to complement human's capacity to take decisions based on vast amounts of uncertain raw data

AI in the 5 Pilars of Autonomous Systems

Norwegian Yara Birkeland

This electrical autonomous cargo vessel will transport fertiliser from Yara's Porsgrunn plant via inland waterways to the deep-sea ports of Larvik and Brevik (31 nautical miles). Removing up to 40,000 truck journeys annually.

Norwegian shore

The system is based on a seven-axis robotic arm that takes the mooring ropes with loops and wraps them around bollards on the dock. The mooring system has redundant kinematics, with built-in movement compensation and track planning. The vessel's position against the quay will inform the robotic arm where each bollard is located, and the track planning is automatically generated by the control system.

Automated Mooring System

Source: MacGregor Inc.

Testing Non-testable Autonomous Systems

- Testing perception systems needs to generate tests with (environment) hazards
- Test coverage over high-dimensional inputs is limited
- Non-linear motion planning involves solving complex constraint models
- Validation of learning systems needs test oracles which can hardly be defined
- Continuous testing is key but needs high control and more diversity

An Ideal Cycle of Continuous Integration and its Timing Challenges

Timeline

Deployment of "Intelligent" Continuous Testing

Optimal Test Suite Reduction

Constraint Programming (CP)

 Routinely used in Validation & Verification,
 CP handles efficiently hundreds of thousands of constraints and variables

 CP is versatile: user-defined constraints, dedicated solvers, programming search heuristics **but it is not a silver bullet** (developing efficient CP models and heuristics requires expertise)

→ Global constraints: relations over a non-fixed number of variables, implementing dedicated filtering algorithms

The nvalue global constraint

[Pachet Roy 1999, Beldiceanu 01]

Where:

N is a finite-domain variable $V = [V_1, ..., V_k]$ is a vector of variables

nvalue(N, V) holds iff $N = card(\{V_i\}_{i \text{ in } 1_i, k})$

```
nvalue(N, [3, 1, 3]) entails N = 2

nvalue(3, [X_1, X_2]) fails

nvalue(1, [X_1, X_2, X_3]) entails X_1 = X_2 = X_3

N in 1..2, nvalue(N, [4, 7, X<sub>3</sub>]) entails X<sub>3</sub> in {4,7}, N=2
```

Optimal Test Suite Reduction with nvalue

The global_cardinality constraint (gcc)

[Regin AAAI'96]

Filtering algorithms for **gcc** are based on max-flow computations

Mixt model using gcc and nvalue

Model pre-processing

F₁ in {1, 2, 6} → F₁ = 2 as cov(TC₁) ⊂ cov(TC₂) and cov(TC₆) ⊂ cov(TC₂) withdraw TC₁ and TC₆

 F_3 is covered \rightarrow withdraw TC_5

 F_2 in {3,4} \rightarrow e.g., F_2 = 3, withdraw TC₄

Pre-processing rules can be expressed once and then applied iteratively

Comparison with CPLEX, MiniSAT, Greedy (uniform costs)

(Reduced Test Suite percentage in 60 sec)

A. Gotlieb and D. Marijan - **FLOWER: Optimal Test Suite Reduction As a Network Maximum Flow** – ACM Int. Symp. on Soft. Testing and Analysis (ISSTA'14), San José, CA, Jul. 2014.

A. Gotlieb and D. Marijan - Using Global Constraints to Automate Regression Testing - Al Magazine 38, no. Spring (2017).

Other Criteria to Minimize

Execution time!

A Gotlieb, M Carlsson, D Marijan, A Petillon. A New Approach to Feature-based Test Suite Reduction in Software Product Line Testing. ICSOFT-EA 2016. Best paper award. Scitepress.org

Deployment of "Intelligent" Continuous Testing

Test Selection and Test Suite Reduction: An Example at ABB Robotics

ст	BASIC SPEC	CIFICATIONS
0	Load (kg)	5.00 7.00
	Reach (m)	0.90 0.70
2	Protection	Std: IP40 Option: IP67, Clean room ISO 4, food grade lubricant
1	Mounting	Any angle
and	Load (kg)	6.00
т	Reach (m)	0.81
0	Protection	Std: IP67 Option: Cleanroom class 6, Foundry Plus
	Mounting	Floor, wall, inverted, and tilted angles
0	Load (kg)	6.00 6.00 10.0 10.0
	Reach (m)	1.20 1.45 1.20 1.45
b	Protection	Std: IP54 Option: IP67 with foundry plus 2
	Mounting	Floor, wall, inverted, tilted angles, and shelf
OID	Load (kg)	4.00 6.00
1 2	Reach (m)	1.55 1.55
	Protection	Std: IP40 (wrist IP67)
5	Mounting	Floor, wall, inverted, and tilted angles

From a concrete set up:

Test Case Repository: ~10,000 Test Cases (TC) ~25 distinct Test Robots ~500 distinct features

10..30 code changes per day

ightarrow Select, schedule and execute about 150 TC per CI cycle
Constraint-Based Scheduling

Tasks with distinct characteristics

Schedule

- 1. Task execution is not interrupted or paused
- 2. Agents are maximally occupied
- 3. Tasks sharing a global resource are not executed at the same time
- 4. Diversity of assignment of tasks to agents is ensured

Agents with limited time or resources capacity

<u>Goal:</u>

Schedule as much tasks as possible on available agents such that the overall execution time is minimized

Test Case Execution Scheduling

(T, M, G, d, g, f)

T: a set of Test Cases
M: a set of Machines, e.g., robots
G: a set of (non-shareable) resources

d: $T \rightarrow N$ estimated duration g: $T \rightarrow 2^{G}$ usage of global resources f: $T \rightarrow 2^{M}$ possible machines

Function to optimize:

TimeSpan: the overall duration of test execution T_E (in order to minimize the round-trip time)

Disjunctive scheduling, nonpreemptive, non-shareable resources, machine-independant execution time

In practice, global optimality is desired but not mandatory, it's more important to control Ts w.r.t TE \rightarrow Time-contract global optimization

	d	f	8
Test	Duration	Executable on	Use of global resource
t1	2	m1, m2, m3	-
t2	4	m1, m2, m3	rl
t3	3	m1, m2, m3	r1
t4	4	m1, m2, m3	r1
t5	3	m1, m2, m3	-
t6	2	m1, m2, m3	-
t7	1	m1	-
t8	2	m^2	-
t9	3	m3	-
t10	5	m1, m3	-

Test Cases: t1, t2, t3, t4, t5, t6, t7, t8, t9, t9, t10

A simple example

r1

The **CUMULATIVE** global constraint

[Aggoun & Beldiceanu AAAI'93]

CUMULATIVE(t, d, r, m)

Where

 $t = (t_1, ..., t_N)$ is a vector of tasks, each t_i in $S_i ... E_i$ $d = (d_1, ..., d_N)$ is a vector of task duration $r = (r_1, ..., r_N)$ is a vector of resource consumption rates m is a scalar

CUMULATIVE (*t*, *d*, *r*, *m*) holds iff

$$\sum_{i=1}^{N} r_i \leq m$$
$$t_i \leq t \leq t_i + d_i$$

Using the global constraint **CUMULATIVE**

CUMULATIVE
$$((t_1,..,t_{10}), (d_1,..,d_{10}), (1, .., 1), 3),$$

 $M_1,..,M_6 \text{ in } 1..3,$
 $M_7 = 1, M_8 = 2, M_9 = 3, M_{10} \text{ in } \{1,3\},$
 $(E_2 \leq S_3 \text{ or } E_3 \leq S_2), (E_2 \leq S_4 \text{ or } E_4 \leq S_2),$
 $(E_3 \leq S_4 \text{ or } E_4 \leq S_3),$
 $Max(MaxSpan, (E_1, ..., E_{10})),$
LABEL(MINIMIZE $(MaxSpan), (S_1,..,S_{10}), (M_1,..,M_{10}))$

Test	Duration	Executable on	Use of global resource
t1	2	m1, m2, m3	-
t2	4	m1, m2, m3	rl
t3	3	m1, m2, m3	r1
t4	4	m1, m2, m3	r1
t5	3	m1, m2, m3	-
t6	2	m1, m2, m3	-
t7	1	m1	-
t8	2	m2	-
t9	3	m3	-
t10	5	m1, m3	-

An optimal solution: $S_1 = 0, S_2 = 4, S_3 = 8, S_4 = 0, S_5 = 4, S_6 = 7, S_7 = 2, S_8 = 9,$ $S_{10} = 3,$ $M_1 = 1, M_2 = 1, M_3 = 1, M_4 = 2, M_5 = 2, M_6 = 2, M_7 = 1,$ $M_8 = 2, M_9 = 3, M_{10} = 3$ MaxSpan = 11

M Mossige, A Gotlieb, H Spieker, H Meling. **Time-aware test case execution scheduling for cyber-physical systems**. Principles and Practice of Constraint Programming, Melbourne, 2017

Limitations of this model

- Static model In practice, robots and test cases are not necessarily available at each CI cycle → Need a more dynamic model!
- Historical data about test case success/failure is not taken into consideration!
- Diversity in scheduling among CI cycles is not handled

A New Approach Based on Priority and Affinity

Affinity: more diversity in the test execution process

Rotational Diversity

$v_{ij} \triangleq p_{ij}$ Priority only (FOP)

Affinity only (FOA)
$$v_{ij} riangleq a_{ij}$$

$$v_{ij} \triangleq \begin{cases} p_{ij} & \text{if } \gamma > \max_{j \in \mathcal{T}^k} \operatorname{AP}_j^k \\ a_{ij} & \text{otherwise} \end{cases}$$

 $v_{ij} \triangleq p_{ij}^{\alpha} \cdot a_{ij}^{\beta}$

30

Total

27 (14.5)

26 (13.9)

21 (12.9)

18(12.1)

17(11.5)

28 (13.6)

27 (13.2)

3 (9.6)

Objective Switch (OS)

V

$$v_{ij} \triangleq \lambda_j^k \cdot \frac{p_{ij}}{\max_{i \in \mathcal{A}^k} \max_{j \in \mathcal{T}^k} p_{ij}} + (1 - \lambda_j^k) \cdot \frac{a_{ij}}{\max_{i \in \mathcal{A}^k} \max_{j \in \mathcal{T}^k} a_{ij}}$$

(b) Diversity: Full rotations of all tasks (Avg. rotations per task)

Definition 1. Multi-Cycle General Assignment Problem

Maximize
$$\sum_{i \in \mathcal{A}^{k}} \sum_{j \in \mathcal{T}^{k}} x_{ij} v_{ij}$$
(1)
subject to
$$\sum_{j \in \mathcal{T}^{k}} x_{ij} w_{ij} \le b_{i}, \quad \forall i \in \mathcal{A}^{k}$$
(2)
$$\sum_{i \in \mathcal{A}^{k}} x_{ij} \le 1, \quad \forall j \in \mathcal{T}^{k}$$
(3)

with

- k: Index of the current cycle
- \mathcal{A}^k : A set of integers *i* labeling *m* agents
- \mathcal{T}^k : A set of integers *j* labeling *n* tasks
- b_i : Capacity of agent i
- v_{ij} : Value of task j when assigned to agent i
- w_{ij} : Weight of task j on agent i

$$x_{ij}:\begin{cases} 1 & \text{Task } j \text{ is assigned to agent } i \land i \in \mathcal{C}_j^k \\ 0 & \text{otherwise} \end{cases}$$

SWMOD: Deployment of Time-aware Test Case Execution Scheduling at ABB Robotics

- ~1500 lines of SICStus Prolog Code with CP(FD)
- Fully integrated into the MS-TFS Continuous Integration
- Using the global constraint binpacking + rotational diversity
- Deployed at ABB since Feb. 2019

Constraint-based Scheduling

CP with **global constraints (cumulative, binpacking)** and rotational diversity can solve the test execution scheduling problem

ABB

"SWMOD deployed at ABB Robotics and used every day to schedule tests throughout several ABB centers in the world (Norway, Sweden, India, China)"

H. Spieker, A. Gotlieb and M. Mossige - **Rotational Diversity in Multi-Cycle Assignment Problems** - In Proc. of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). Feb. 2019.

Deployment of "Intelligent" Continuous Testing

Test Prioritization: Learning from previous test runs

Motivation:

Adapting priorities to the most interesting test cases based on past test verdicts (from previous CI cycles)

- Considering test case meta-data only (test verdicts, execution time, ...)
- Limited memory of past executions / test verdicts

Reward Functions and Experimental Evaluation

Reward Function 1. Failure Count Reward

$$reward_i^{fail}(t) = |\mathcal{TS}_i^{fail}| \qquad (\forall t \in \mathcal{T}_i)$$

Reward Function 2. Test Case Failure Reward

$$reward_i^{tcfail}(t) = \begin{cases} 1 - t.verdict_i & \text{if } t \in \mathcal{TS}_i \\ 0 & \text{otherwise} \end{cases}$$

Reward Function 3. Time-ranked Reward

$$reward_{i}^{time}(t) = |\mathcal{TS}_{i}^{fail}| - t.verdict_{i} \times \sum_{\substack{t_{k} \in \mathcal{TS}_{i}^{fail} \land \\ rank(t) < rank(t_{k})}} 1$$

3 Industrial data sets (1 year of CI cycles) NAPFD: Normalized Average Percentage of Faults Detected

H. Spieker, A. Gotlieb, D. Marijan and M. Mossige **Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration.** In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA'17). New York, NY, USA: ACM, 2017.

Adaptive Metamorphic Testing

Motivation: Learning which *Metamorphic Relation* works best to test vision-based systems

Input lave

H. Spieker, A. Gotlieb – Adaptive Metamorphic Testing with Contextual Bandits – Journal of Systems and Software. 165: 110 (2020) A. Gotlieb, D. Marijan and H. Spieker: Testing Industrial Robotic Systems: A New Battlefield! In Software Engineering for Robotics, 465p. Edited by A. Cavalcanti, B. Dongol, R. Hierons, J. Timmis, J. Woodcock ed. Springer Nature, 2021.

Take Away Message

- Testing autonomous systems brings new interesting challenges for software V&V research
- Some AI techniques such as Constraint Programming (CP) and global constraints are already very successful in test case generation, test suite reduction and test execution scheduling
- Testing autonomous systems such as collaborative robots or self-driving cars is challenging as:
 - **Expected behaviours** cannot be specified in advance
 - **Interactions with humans** involve more safety issues

Course Overview

- Software Testing Introduction
- Code-based Testing
- Testing of Autonomous Systems
- Open Challenges in Software Testing

Testing Neuro-Symbolic AI models

- Neuro-symbolic AI models combine NN (CNN, RNN, LSTM Transformers, etc.) with symbolic reasoning to improve
 1. The perf. of classification/regression models in ML
 2. The explicability of NN models
- Besides the oracle problem, testing these models is challenging as it it requires to quantify the benefice of each part (NN vs Symbolic)
- Testing the quality/interest of explanations is an open research question – An overall field has been created, the field of XAI

Testing AI model Trustworthiness (1)

Need to adopt a definition of Trustworthy AI (e.g., EU HLEG AI)

"On 14 June 2023, MEPs adopted Parliament's negotiating position on the AI Act. The talks will now begin with EU countries in the Council on the final form of the law." https://www.europarl.europa.eu/

Testing AI model Trustworthiness: A Research Programme

VIAS Dept.

Validation Intelligence for Autonomous Software-Systems

Arnaud GOTLIEB

VIAS explores how to test the robustness, reliability, and transparency of software-systems (industrial robots, selfdriving cars, navigation systems, etc.) with intelligent methods

- 1. Trustworthy Artificial Intelligence for Autonomous Systems
- 2. Testing Intelligent Transport Systems
- 3. Learning and Reasoning for Data-Intensive Systems

April 2023 (11 employees): 3 permanent researchers, 5 postdocs, 3 PhDs, 3 external PhDs + 2 ongoing recruitments

Funded by EC: AI4CCAM (HEU, Coordination, 2023-25), TRANSACT (ECSEL, 21-24), MARS (HEU, 23-26), CERTIFAI (HEU, 23-26)

Funded by RCN: T-Largo (2019-22), T3AS (19-22), SMARTMED (19-22), TSAR (19-23), AutoCSP (21-24)

RESIST_EA: 1st Inria-Simula Associate Team on Resilience of Software Systems (2021-2024)

