From Software Testing to Intelligent Validation of
Autonomous Systems

Du Test Logiciel a la Validation Intelligente des Systemes Autonomes

Ecole des Jeunes Chercheurs en Programmation
2023

Arnaud Gotlieb
Simula Research Laboratory
Norway

2023 EJCP

Course Overview

Software Testing Introduction
Code-based Testing
Testing of Autonomous Systems

Open Challenges in Software Testing

2023 EJCP

A Historical Perspective on Software Testing

1960 1980 1990 2000 2010 2020

1945

EJCP

2023

9/9/1947

Grace Hooper

2023 EJCP 4

2023

1960-80: Testing = Debugging

What have we learnt since then?

Causality: Error = Fault - Failure

In fact, 3 distinct activities:

* Failure detection (Testing purpose)

* Fault localization (Debugging purpose)
* Error correction (Debugging purpose)

EJCP

1980-90: Testing = Destruction

“Testing is the process of executing a program with the intent of
finding errors” [G. Myers The Art of Software Testing 1979]

Consequently:

validation team # development team
But, there is no specification to test the program against

That dogmatic position was progressively given up!

2023 EJCP 6

1990-2000: Testing = Fault Prevention

“To convince that a program conforms to its specifications by
using static or dynamic analysis techniques”

- Program analysis - Control: Property checking
Before execution

- Program execution - Testing: Result evaluation
After execution

2023 EJCP 7

Visual 1998

‘.. deref2 - Microsoft Yizsual C++ - [derefZ2.cpp] [_ |5] x|

_|®] x|

[File Edit “iew Inzert Project Build Tool: “Window Help

lalzme | a6 2- - oEe =1 | s
C ;II Al clazs members) l”[N-:n members - Create CAC++ Member Function.. &) [=

|[em= 1=

s S+ derefl . cpp —
o -
"-.-'-.-"-:urkspan:e 'deref2"; 1 projec
=28 deref2 files #include "stdafz. h"
i pouee e
« Deref2
*] deref2 cpp ?lass C s = |
' 5| Shddfxcpp public: Ce programme va étre arrété parce qu'il a effectus Eore: |
- -[_7] Header Files int a: une opération non conforme. —
-[_] Resource Files ToEp : : Deboguer |
P Fleadhe. bt 5i le probléme perziste, contactez le revendeur du —
: int maing) prograninie. .-
Diétails = |
p—ra = 3:
return 0
T
1 i H |
-
Lz Elass"-.-"iewl File"-.:"iewl [« | _"l—

x| Configuration: deref?2 — Windd Debug -
HCompiling. . . =
deref 2 . cpp
Linking. ..
derefd ex= — 0 errori(=s). 0 warningi=s)
[T I Euild { Debug » FindinFiles 1 % Find in Files 2 &, Results 7 N4 | 3

[Ln1.Col15 [REC [COL [OWR [READ

= Démarrerl I% deref? - Microzoft .. % Xniew [gb] I E deref2 I E deref2 I
2023 EJCP

Visual 2017

o0 >
Fichier Edition Affichage Projet Génerer Déboguer Outils Fendtre 7
Er-rm-= 3 ¥ B v & -~ p Debug - | gk - B EEPE-
G e b A ZZ 4% %%,
Fage de démarrage deref.cpp | 4 [+ ¥ || Explorateur de solutions - derefl & X
£ | [Giobales) >l |-tmain i
o . 1 [:
@ O class A — @ Solution 'derefl’ {1 projet)
i 0 == derefl
o public: derefl_exe a rencontré un probléme et doit fermer. Hous [:3] Références
P int m vous prions de nous excuser pour le dézagrément - 3 Source Files
% N ’ encouru. @ deref.cpp
= L p: Sivous stiez en train d'effectuer un travail en cors, les informations sur [Z7 Header Files
_ _ lesquelles wous travailiez peuvent avoir &té perdues. [Resource Files
% £ int mwaini)
{ VYeuillez zignaler ce probléme a Microsoft.
p-ra = 3 Mous avonzs créé un rapport d'erreurs gue vous pouvez nous envoyer. Mous
return(O j; traiterons ce rapport confidentiellement et anonpmement.
i
Pour afficher lez données de ce rapport d'erreurs, Cliguez ici, L
@ Explorateur ... E’ Affichage d...
Débogage Erwvoyer le rapport d'erreurs | Me paz envoper
Propriétés o x

@Muzilla CoE 2

Eichier Edition Affichage aller & Marque-pages ©Outils Fenékre Aide
Q‘ - @“ a "%% \& File: /i1 T agotlieb)gotlieb/RECHERCHE /C++ _E¥deref1 /DebugiBuildLog. hktm * | | z®.Rechercher
Précédent Actualiser —
fﬁ Accueil q.!Marque-pages
Compilation... fad
deref.cpp
Edition des liens en cours... j
Resultats
Le journal de génération a &té enregistré & 1'emplacement "file://c:i’Agotlieb’gotlieb' Recherche’ C++ ex’\derefl) Debug\B_
derefl - 0 erreur(=s), 0 avertissement (=)
el
< >
-, M s r S
i £ v E&] @4 Chargd - L

m if Postedetr... &% derefl - Mic... B3 'c:\agatlieb,. .. B3 'c:hagatlieb. .. BN "c:\agatlieb,. ..

FR @-ﬁ) W = 14000

Software testing in the V software
developpement process:

Requirements - Usage &
\ acceptance testing

System testing

(performence, load, robustness, security testing)

Architecture & system

\

Functional specifications — Unit & Integration testing

\

2023 EJCP 10

Coding design

2000-2010 : Testing = Model-Based Testing (MBT)

[
C_ User Requirements > o manual ... Modelisation
. DEV | TEST
[
[
Specification and I
development i Test Model
[(formal, graphical)
: StateCharts, B, UML,...
[
I Automatic Test Case
: : Generation
’ |
Program under \ . : autom. | Executable
test Validation test scripts

MBT added-value: Build a (test) model instead of test cases to validate/verify the program

2023 EJCP 11

2010-2020: Testing = Agile Testing/Test-Driven Dev. (TDD)

| .
@Require@ manual . Coding
: DEV ! TEST
Unit/Integration
Tests

Specification and
development

v

Program under Autom. | EXecutable
test) > | test scripts
Validation

Writing tests instead of a specification model is
considered more agile

2023 EJCP 12

2020-20..: Testing = Intelligent Testing / Al-driven Testing

Specification and
development :

\

Program unde
test

Autom. Al-based test generation and

DEV

TEST

Autom.

r)

>

Validation

Maintenance based on:
1. Historical data

2. Simulated data

3. Synthetized data

\ 4

Unit Tests

Executable
test scripts

Al is revolutionizing the way software systems are developed and tested

2023

EJCP

13

Terminology
(IEEE Standard Glossary of SE, BCS’s standard for Softw. Testing)

Validation: “The process of evaluating software at the end
of software development to ensure compliance with intented
usage” -- Are we developing the right product ?

Verification: “The process of determining whether the
products of a given phase of the software development
process fulfill the requirements established during the
previous phase” -- Are we developing the product right ?

Testing: “Evaluating software by observing its execution”

2023 EJCP

14

2023

Program Testing: Our Definition

- Testing = Execute a program P to detect faults,

which are non-conformities w.r.t. the program
specification F

- Looking for counter-examples:

1?X tq P(X) # F(X)

EJCP

15

Program Correction: Fundamental Limitation

Impossibility to demonstrate the correction of a program in the general
case as a consequence of the undecidability of the Halting problem

of a Turing machine

“Program Testing can be used to prove the presence of bugs, but never
their absence” [Dijkstra 74]

PS : Expert developer > ~1fault/ 10 LOC
~163 faults / 1000 instructions

[B. Beizer Software Testing Technigues 1990]

2023 EJCP 16

Test Process

Program P

|
_— T

Inputs Oracle Outputs

\ L
|

Verdict: passl or failX

2023 EJCP 17

Oracle Problem :
How to verify the computed outcomes?

In Theory:
- By predicting the expected result
- By using a formulae extracted from the specification

- By using another program
- By using known properties about multiple executions of the program

In Practice :

- Approximative predictions (due to floating-point computations,...)
- Unknown formula (because Program = Formulae)

- Non bug-free oracles and incorrect properties

2023 EJCP 18

Test Input Selection Problem
How to choose inputs for testing?

A. Black-box Testing: Using sepcifications to generate test inputs

= - =

B. Code-Based Testing: Using the program code and structure

—— | <00 | =

2023 EJCP 19

A. Black-box Testing

Using a specification model:
- Informal (Partition Testing, Boundary Testing, ...)

- Half-formal (Use cases, Sequence diagrams, UML/OCL,
Causes/effects graphs...)

- Formal (Algebraic specifications, B Machines, Transition
systems, IOLTS, ...)

2023 EJCP

20

B. Code-Based Testing

Using a model computed from the source code of the program under
test

- model = Internal representation of the program structure

- Heavy usage of Graph Theory, in particular, coverage techniques

2023 EJCP 21

Code-Based Testing is indispensable (1)

Specification:
Return the product of

I by |

(i=0,j=0)-->0
(i = 10, j = 100) -->1000

--> 0K

2023

prod(int 1,int 7J)
{
int k ;
1f(1==2)
k 1= 1 << 1 ;
else

(...)

return k ;

EJCP 22

Code-Based Testing is indispensable! (2)

Specifications :
renvoie le produit de
| par |

(i=0,j=0)-->0
(i = 10, j = 100) -->1000

/

Undetected fault if only
black-box testing is

prod (int 1,1nt 7
{
int k ;
1f(1==2)

/////” k 1 << 1
else

(.)

return k ;

used par

)

°
’

patch 2 k j << 1

2023

EJCP

23

Regression Testing
Test Set 3

Test Set 2

Test Set 1 ‘_

New
Tests

Regression
Tests

2023 EJCP 24

Bibliography: Reference Books

',T'"/HE ’ART OF
/X :

SOFTWARE

TESTING

GLENFORD Js MYER:S

TOM BADGETT COREY SANDLER

rd AMMANN- = QFFUTT

INTRODUCTION TO
SOFTWARE TESTING

2023

études et logiciels informatiques

Le test
des logiciels

ARTIFICIAL
INTELLIGENCE AND

< SOFTWARE TESTING
TEST-DRIVEN Building systems you can trust

D EVE LOPM E N T Adam Leon Smith, Rex Black, James Davenport,

Joanna Olszewska, Jeremias Rofiler, Jonathon Wright

KENT BECK

25

Bibliography: Journals

st Technique
4 et science
e informatiques

RET) el TSI« Vohume 27 - o" /2002

IEEE TRANSACTIONS ON
SOFTWARE
ENGINEERING

Optimenarson phadtegas ¢t 1Tt ¢ wncs web
Resotre Oy, e Regragd. Nivdas Mewwmanc b, Galios Vorsiass

Commiruncthon do mrvices Gatriads - wne sppeoce 3 buse @ agones mobies
Séegtriod Rounvrsh

Use gy e funsr stdaier L compleuind &u Mot de conmtle
PR AR ——

Hiagaes Casae, Lovsis Férmd. Chetstine Rashangr, Pascal Sains

Pidager W Dnflasra
How Developers Use the Eclipse IDE ks

_Qn'»su Lavoister

k-5 * e Wl

2023 EJCP

2023

Course Overview

Software Testing Introduction
Code-based Testing
Testing of Autonomous Systems

Open Challenges in Software Testing

EJCP

27

2023

5 1,
DECISION TESTING
TESTING CRITERIA

3

AUTOMATIC
TEST INPUT
GENERATION

Code-Based Testing

EJCP

Oracle Problem

28

2023

1. TESTING CRITERIA

EJCP

29

Internal Representations

Program Structure Abstractions

- Control Flow Graph (CFG)

- Def/Use Graph

- Program Dependence Graph

2023 EJCP

30

Control Flow Graph (CFG)

Oriented and connex graph (N, A, e, s) where

N: set of nodes =
Instructions block sequentially executed

E: set of arcs, N x N relation,
Some arcs are labelled with {T, F} = Possible branching of the
control flow

e: Program input node

s: Program output node

2023 EJCP

31

Control Flow Graph (CFG): Example

double P(short x, short y) {

short w = abs(y) ;
doublez =1.0;

while (w!=0)
{

Z*X;

w-1;

Z
W
}
if (y<0)
z=10/z;
return(z) ;

¥

2023 EJCP

d
-

@ /<0

32

Structural Criterion: All _nodes | All_statements

Motivation: To cover all program instructions @

at least once during testing /5
e
Def. A subset C of program paths of the CFG
(N, A, e, s) satisfies All_ nodes
Iff vn € N, 3C, € C
such that n is a node of C,

/

@)

Example: Here, only one path is necessary
a-b-c-b-d-e-f [6/6 nodes]

o

2023 EJCP 33

Structural Criterion: All_arcs | All_decisions

(N,A, e, s) satisfies All _arcs
Iff va € A, 3C, € C
such that a Is an arc of C; /

least once during testing /5
Def: A subset C of paths of the CFG : b

Motivation: To cover all program decisions at @

Example: Here, 2 paths are necessary

©)
a-b-c-b-d-e-f [6/7 arcs]

a-b-d-f [3/7 arcs] | /
®)

2023 EJCP 34

Structural Criterion: All_simple_paths | All k paths

Motivation: To cover all execution paths which do not
iterate more than once in loops or do not exceed a

given length @
Example: Here, 4 simple paths are necessary fbg
to cover All_simple paths
a-b-d-£f
a-b-d-e-f /

a-b-c-b-d-f
a-b-c-b-d-e-f
Example: 2 paths are necessary to cover All_5 paths
(Paths with less than 5 instruction blocs)

a-pb-d-f
a-b-d-e-1f

2023 EJCP

@)

o

35

Structural Criterion: All _paths

Def. A set C of paths of the CFG (N, A, e, s)

satisfies all_paths if C contains all paths from
e 10s

Here, it iIs Impossible as there is an « of
paths. Note also that some paths may be
Infeasible!

All _paths is stronger than All _k_paths
All_k paths is stronger than All _arcs

All _arcs is stronger than All_nodes

2023 EJCP

36

Executed Path: exec (P, X)

o P(short x,y)
Principle: short w= abs(y

X executes a single path of the CFG (no double z= 1.0
concurrency, no dynamic bindings)

Def. Sequence of CFG nodes, not necessarily

finite, followed by the execution flow when
P Is feeded with X as input

Examples:

exec (P, (0,0)) =a-b-d-£ 7=1.0 / 2

exec (P, (3,2)) =a-b-(c-b) ?-d-=£ /
return(z@

2023 EJCP 37

Infeasible Path Problem

P(short x,y)

short w= abs(y)
Let c be a CFG path of P, double z= 1.0
Does X exist such that c=exec (P, X) ?

Here, a-b-d-e-f Is infeasible!

Weyuker 79

Determining if a node, an arc, or a path of
the CFG is feasible is undecideable in the
general case

Sketch of proof: Reduction to the Halting
problem of a Turing Machine

2023 EJCP

Exercise:

Find the infeasible paths of the program

P(short x)
}a) X >0
@ Y f

£ 5

2023 @ EJCP

X <<

39

Measuring code coverage

3 distinct techniques
- Instrumenting source code
+ Easy to implement
+ Powerful as everything regarding executions can be
recorded
- Add untrusted code in trusted source code

- Instrumenting binary code
+ Do not modify source code
- Difficult to implement

- Use a debugger
+ Do not modify source code
- Specific to each compiler

2023 EJCP 40

2023

2. DECISION TESTING

EJCP

41

Condition / Decision in a Program

Condition (bool., Arith. expr.,

/\\

1f(A &&

- J
hd

Decision
(Logical predicate in a control structure of the program)

Notation: DeC is the truth value of the decision

2023 EJCP

42

Some Testing Criteria associated to Decisions

if(A && (B || C))
1. Decision Criterion (DC): A=1,B=1,C=0 - Dec=1
A=0,B=0,C=0 - Dec=0

2. Condition Criterion (CC) : A=1,B=1,C=0 - Dec=1

3. Modified Condition/Decision Criterion (MC/DC)

4. Multiple Condition/Decision Criterion: 2°=8 test cases

2023 EJCP 43

Modified Condition/Decision Criterion (1)

Objective: Démontrer I'action de chaque condition sur
la valeur de vérité de la décision

if(A && (B || C))

Principe : for each condition, find 2 test cases which
flip Dec when all the other conditions are fixed

EX: For A A=0,
1

2023 EJCP

Modified Condition/Decision Criterion (2)

if(A && (B || C))

for A A=0, B=1,C=1 -- Dec=0
A=1, B=1,C=1 -- Dec=1

for B A=1, B=1,C=0 -- Dec=l
A=1, B=0,C=0 -- Dec=0

for C A=1, B=0,C=1 -- Dec=1
A=1,—B=0,€=0 Pec=0

Here, 5 test cases are sufficient for covering MC/DC !

2023 EJCP

45

Exercise:

for A

for B

for C

2023

Can we do better?

1f(A & (B || C))
A= , B= ,C= —— Dec=
A= , B= ,C= —— Dec=
A= , B= ,C= —— Dec=
A= , B= ,C= —— Dec=
A= , B= ,C= —-- Dec=

EJCP

46

Modified Condition/Decision Criterion (3)

Property: If n =#conditions then
covering MC/DC requieres at least n+1 TC and max 2n TC

n+1 < #Test cases < 2*n

Coupled Conditions: Flipping the truth value of one condition
Impacts the truth value of another one

When there is no coupled conditions, the minimum (n+1) can
always be reached [Ref ?]

2023 EJCP

47

Links with object-code coverage?

Covering MC/DC = covering all the decisions of the object-code
But

Covering MC/DC}{:overing all the decisions of the object-code

Covering all paths of the object-code = covering MC/DC
But

Covering all paths of the object-code%overing MC/DC

2023 EJCP 48

From the Galileo development standard

Decision Coverage
(Source code)

Structural coverage DAL A DAL DAL C DAL DAL
B D E

Statement coverage 100% |100% |100% 90% N/A
(source code)

Statement coverage 100% | N/A N/A N/A N/A
(object code)

Decision coverage 100% |100% | N/A N/A N/A

(source code)

Modified Condition & 100% | N/A N/A N/A N/A

2023

EJCP

49

2023

3. Automatic Test Input Generation

EJCP

50

Most Used Techniques

- Exhaustive Testing
- Testing by Sampling

- Random Testing (a.k.a. Fuzzing)
- Symbolic Execution

2023 EJCP

51

Exhaustive Testing

/—‘ Dom (P)

- Exhaustive sampling of the program input space
- Selection of all inputs and execution of the program

- Equivalent to a correction proof (when the execution terminates)

2023 EJCP 52

Exhaustive Testing: Limitations and Advantages
- Usually untractable!
P (ush x;, ush X,, ush X3) {...}

//

232 x 232 x 232 values = 2°° distinct test inputs

- Interesting estimation of the size of the input search space, against a
test objective

Test Objective Example: To reach a selected instruction in the code

2023 EJCP 53

Testing by Sampling

/—‘ Dom (P)

X, X, X, X,

Weak version of exhaustive testing

Examples :
{0, 1, 2, 2%2-1} pour un ush

{NaN, -INF,-3.40282347e+38, -1.17549435e-38, -1.0, -0.0,.. }
for a 32-bit floating-point number (IEEE 754)

2023 EJCP 54

Random Testing

Uniform probability distribution on the program input space

(l.e., each test input is equi-probable)

- Using pseudo-random generators

- Require an automated oracle (e.g., Metamorphic Testing)

- Stopping criteria must be fixed (number of test inputs, covering a
structural criterion, time-out, etc.)

2023

EJCP 55

Selection Criterion C

- Process of test inputs selection
- Sometimes, it induces a « partition » over the program input space

(e.qg., All_paths of P)

P(int 1,1nt 7Jj)
{
1f(C,)
else

1f(C,)
else

Dom (P)

J

2023

EJCP

56

Deterministic Coverage of Criterion C

Selection of at least one element per subdomain of the partition

‘ Dom (P)

Based on the uniformity assomption that a single input is sufficient to
test the whole subdomain

2023 EJCP 57

Probabilistic Coverage of Criterion C

Random selection of test inputs according to a distribiution profile

« / Dom (P)
|
X4 | +
| X,
+ +
Xs X4 n Xe
X +
° X3 >

2023 EJCP 58

Is Random Testing Efficient to Cover a Criterion?

p{xe€A}: probability that a random test input X covers an element A

Dom (P)

SC — {Al"

v

Here p{xeA;} < p{xeh,} < p{xelA;} < p{xeh,}
Hence, random testing covers better A, than A,

RT is well adapted to test the program robustness, but hill-conditioned to test

corner-cases
2023 EJCP

AL}

Symbolic execution

Symbolic state: <Path, State, Path Conditions>

Path = Nj-..-N, IS a path expression of the CFG
State = <V, 0> ovarpy Where @ is an algebraic expression over X
Path Cond. = c,,..,C, where c;is a condition over X

X denotes symbolic variables associated to the program inputs and Var(P) denotes
internal variables

2023 EJCP 60

Symbolic execution

Ex: a-b-(c-b)?>-d-f with XY P(short x.y)

short w= abs(y)

<q, <z,1>, <w,abs(Y)>, true > double z= 1.0
<a-b, <z,1>, <w,abs(Y), abs(Y)!=0>
<a-b-c, <z,X>, <w,abs(Y)-1>, abs(Y)!=0>
<a-b-c-b, <z,X.>, <w,abs(Y)-1>,
abs(Y) 1= 0, abs(Y)-11=0»
< a-b-c-b-c, <z,X?, <w,abs(Y)-2>,

abs(Y) 1= 0, abs(Y)-11=0»

<a-b-(c-b)?, <z X2, <w,abs(Y)-2>,
abs(Y) 1= 0, abs(Y) I= 1, abs(¥)-2 = 0 >

<a-b-(c-b)?-d, <«z,X?>, <w,abs(Y)-2>,
abs(Y)!=0,abs(Y)!=1,abs(Y)=2,Y>0 >

return(z)
<a-b-(c-b)2-d-f, <z,X2>, <«w,0>, y=2 >

Computing Symbolic States

» <Path, State, PC> is computed by induction over each statement of Path

» When the Path conditions are unsatisfiable then Path is non-feasible and
reciprocally (i.e., symbolic execution captures the concrete semantics)

ex: <M}, abs(Y)=0 A Y<O0 >

» Forward vs backward analysis:

Forward -> interesting when states are needed
Backward - saves memory space, as complete states are not computed

2023 EJCP 62

Backward analysis

Ex_: a-b-(c-b)?-d-f with X,Y
f,d: Y >0

b:Y>0,w=0

c:Y20,w-1=0
b:Y>0,w-1=0,w!=0
c:Y20,w-2=0,w-11=0

b: Y>0,w-2=0,w-11=0w!=0

a: Y 20, abs(Y)-2 =0,
abs(Y)-1!=0, abs(Y) !=0

Y =2 EJCP

P(short x.,y)
short w= abs(y)
double z= 1.0

X 2

Constraint Solving in Symbolic Evaluation

Mixed Integer Linear Programming approaches
(i.e., simplex + Fourier’s elimination + branch-and-bound)

CLP?R,Q) in ATGen ~ (Meudec 2001}
Ipsolve iIn DART/CUTE (Godefroid/Sen et al. 2005

SMT-solving (= SAT + Theories)

STP in EXE and KLEE _ Cadar et al. 2006;
Z3 in PEX and SAGE (Tillmann and de Halleux 2008

Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler (Williams et al. 2005)
EUCLIDE (Gotlieb 2009)
ECLAIR (Bagnara Bagnara Gori 2013)

2023 EJCP 64

Problems for Symbolic Evaluation Techniques

—> Combinatorial explosion of paths
- Symbolic execution constrains the shape of dynamically allocated objects

int P(struct cell * t) { / t

if(t==t->next){... *

next

constrains t to:

- Floating-point computations =

F Charreteur, B Botella, A Gotlieb. Modelling dynamic memory management in constraint-
based testing. Journal of Systems and Software. Elsevier, 2009

2023 EJCP 65

float foo(float x) {
float v = 1.0el2, z ;
if(x < 10000.0)

z = X + vy

if(z > vy)

A W N

Is the path 1-2-3-4 feasible ?

x < 10000.0

Path conditions: / On the reals : x < (0,10000)

x +10e12 > 1.0el2 On the floats : no solution !

2023 EJCP 66

Conversely, float foo(float x) {
float v = 1.0el2, z ;
1. 1£f(x > 0.0)
2. z = X + y;
3. if(z == vy)
4.
Is the path 1-2-3-4 feasible ?
Path conditions: On the reals : no solution
x>0.0
x +1.0el12 = 1.0el2 On the floats: x € (0, 32767.99..)

Solution: build a dedicated constraint solver over the floats !

B Botella, A Gotlieb, C Michel. Symbolic execution of floating-point computations. STVR 2006
R Bagnara, M Carlier, R Gori, A Gotlieb. Symbolic path-oriented test data generation for floating-point programs.
IEEE ICST 2013

2023 EJCP 67

Dynamic Symbolic Evaluation (DSE)

» Symbolic execution of a concrete execution (also called concolic execution)
» By using input values, feasible paths only are (automatically) selected

» Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005),
PEX (Tillman et al. Microsoft 2008),

SAGE (Godefroid et al.2008)
KLEE (Cadar et al. 2008)

2023 EJCP 68

Dynamic Symbolic Execution for All-k-paths

1. Draw an input at random, execute it and record path conditions

@ 2. Flip a non-covered decision and solve the constraints to find a new input x

@ 3. Execute with x
; e 4. Repeat 2

2023

69

Example (1)

16)
j o* i;

I IA

)

.
14

if(jJ > 8
7 =0

return Jj;

}

2023

EJCP

70

Example (2)

I IA

16)
J o1

)

.
14

if(3 > 8
i =0

return j;

}

2023

Random imput generation
(1=15448)

- Path 1-3-5

EJCP

71

Example (3)

J =2
f(i<16)
J =3 *1
1f(] 8)
J = 07

return 7J;

}

2023

Try to solve

J1=2
1> 16

Jp>8

Unsatisfiable, therefore @
Path 1-3-4 is non-feasible

EJCP

72

Example (4)

] = 2;
f(i<16)
J =3 *1
if(3 8)
J = 03

return 7J;

}

2023

Bactrack and try to solve

J1=2
| <=16

O
> (i=2) --Path 1-2-3-5 L

EJCP

f

Q

73

Example (5)

f(1int 1)
{ Bactrack and try to solve
] = 23 -
. Jh =
f(i< 16)
=9 % 1 1<=16
o =)1
1if(3 8)
J = 0; .
j,>38

return 7J;

f
) >(i= 10) -- Path 1-2-3-4-5

All-paths covered with three test ~
data (i = 15448,1=2,1=10) @

2023 EJCP

74

Dynamic Symbolic Execution: Discussion

Requires to bound the number of iterations in loops
- suitable for automatic test data generation
for the All-k-paths criterion

Performance of the method depends on the first initial random
input

Numerous extensions to handle pointers as input parameters,
logical decisions, function calls, bit-to-bit operations

2023 EJCP 75

2023

5 1,
DECISION TESTING
TESTING CRITERIA

3

AUTOMATIC
TEST INPUT
GENERATION

Code-Based Testing

EJCP

Oracle Problem

76

2023

4. Metamorphic Testing

EJCP

I

Non-testable programs
[Weyuker TSE 82]

€ No (complete and correct) oracle available

Because

No formal specifications, incomplete specifications;
Expected results too difficult to compute;
Inferred/generalized from a set of instances;
Depending on the execution environment;

Typical examples:
Third-party library functions, RESTful APIs

Complex mathematical functions (using floating-point computations)
Trained ML models

Optimization programs (optimal planners, assignment, scheduling, etc.)
Reactive and self-adaptive programs

78

Metamorphic Testing [Chen et al. 98]

Metamorphic Relation (MR) of a program P:

User-specified input-output relation about P

Let’s start with a trivial example:
P : a program that implements the gcd of 2 integers
Problem: P(1309, 693) = ?

MR: Wvu, ¥, gadu, v) = gcav, u)

Hence, if P(1309, 693) = P(693, 1309) then verdict = Fail

* Note that many other programs than gcd satisfy P(u, v) = P(v, u) so,
MRs are necessary, but not sufficient to establish program correctness

** Note also that there are many other possible MRs
MR: Vu, Vv, gcdp.u, p.v) = p. gcdu, v) if p is a prime number

MR: Vu, Vv gcdu, v) = gcdv, u-v) ifu>v
79

Graph Theory

How to test a program P that computes a shortest path in an undirected
graph G?

shortestPath(G, a, b) = ?

if P(G, a, b) = a-el-e2-e3-b and P(G, b, a) = b-g1-g2-a then
verdict = Fail

MR: Vva, Vb |shortestPath(G, a, b)| = |shortestPath(G, b, a)|

* Note that MRs can be based on the usage of other functions (possibly under test)
** Note also that MRs can involve more than one additional computation

MR: |shortestPath(G, a,b)| < |shortestPath(G, a, ¢)|+ |shortestPath(G, c, b)|

Search Engines

if search(“tom” OR “jerry”) returns less items than search(“tom” AND "jerry”)
then verdict = Fail

MR; vki, vk2 Isearch(k1 OR k2)| = |search(kl AND k2)|

X: (k1 OR k2), y: (k1 AND k2) implies |search(x)| = |search(y)]

Main Usages

1. To generate follow-up test cases

Test case (Pass) .
Transformation
extracted from MR
Follow-up
test case

P(t(x))
Is checked using the MR

?

82

2. To create partial oracles

Test cases

Strategies for Finding Metamorphic Relations

1) Driven by transformation over input-data

Which transformations t over the inputs x do not change the outcome of
p?

i.e., find t such that P(x) = P(t(x))

Transformations t: add, remove or reorder elements, perturb inputs, shift
or rotate images, ...

2) Driven by output-relation
Given two executions of P, what kind of relations do exist between these

executions ?
i.e., Given x,y, P(x), P(y), find R (P(x), P(t(x))

Relations R,: less_or_equal, length, subset, equivalent,...

3) Driven by domain-knowledge
Which invariant properties P has to satisfy ?

4)...

Applications of MT (1/3)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE

Testing online search | | IEEE TSE 2017
engines (Flicki, Youtube, Metamorphic Testing of RESTful Web APIs

Spot/fjé, . ,) Sergio Segura, José A. Parejo, Javier Troya, and Antonio Ruiz-Cortés

Transactions on Software Engineering

Compiler Validation via Equivalence Modulo Inputs

. . Vu Le Mehrdad Afshari Zhendong Su PLDI ? 1 4
Test/ng Comp//EfS Department of Computer Science, University of California, Davis, USA

{vmle, mafshari, su}Q@ucdavis.edu

- = - ()
BNIC Bioinformatics BioMed Cental

Methodology article

An innovative approach for testing bioinformatics programs using
metamorphic testing
Tsong Yueh Chen', Joshua WK Ho*??, Huai Liu' and Xiaoyuan Xie'

Testing bioinfc L
Address: 'Centre for Software Analysis and Testing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, “School of
ro ,‘ams Information Technologies, The University of Sydney, Sydney, NSW 2006, Australia and *NICTA, Australian Technology Park, Eveleigh, NSW
2015, Australia
Genes Re t !/at Net E-mail: Tsong Yueh Chen - tychen@swin.edu.au; Joshua WK Ho* - joshua@it.usyd.edu.au; Huai Liu - hliu@swin.edu.au;
. L Xiaoyuan Xie - xxie@swin.edu.au;
5/' /atl'o) *Corresponding author

Published: 19 January 2009 Received: 29 May 2008
BMC Bioinformatics 2009, 10:24 doi: 10.1186/1471-2105-10-24 Accepted: |9 January 2009

Applications of MT (2/3)

Testing code obfuscators,
testing web interfaces,
penetration testing

Testing simple ML models

Published in final edited form as:
Computer (Long Beach Calif). 2016 June ; 49(6): 48-55. doi:10.1109/MC.2016.176.

Metamorphic Testing for Cybersecurity

Tsong Yueh Chen,
Department of Computer Science and Software Engineering, Swinburne University of
Technology, Australia

Fei-Ching Kuo,
Department of Computer Science and Software Engineering, Swinburne University of
Technology, Australia

Testing and Validating Machine Learning Classifiers by
Metamorphic Testing™ JSS 2011

Xiaoyuan Xie**¢* Joshua W. K. Ho", Christian Murphy®, Gail Kaiser®,
Baowen Xu®, Tsong Yueh Chen®

= a o 4 L . L - o -1 Iz - - Ix L Tz Ngan 4

Applications of MT

(3/3)

Testing DNNs in self-driving
cars

DeepTest: Automated Testing of
Deep-Neural-Network-driven Autonomous Cars

Yuchi Tian Kexin Pei
University of Virginia Columbia University
yuchi@virginia.edu kpei@cs.columbia.edu
ICSE’18
Suman Jana Baishakhi Ray
Columbia University University of Virginia
suman(@cs.columbia.edu rayb@virginia.edu

Generating driving scenes

DeepRoad: GAN-based Metamorphic Autonomous Driving System Testing

Mengshi Zhang!, Yuqun Zhang?*, Lingming Zhang®, Cong Liu®, Sarfraz Khurshid!
! University of Texas at Austin

ASE bJ 1 8 2 Southern University of Science and Technology
3 University of Texas at Dallas

mengshi.zhang @utexas.edu, zhangyq @sustc.edu.cn, lingming.zhang @utdallas.edu,
cong @utdallas.edu, khurshid@ece.utexas.edu

Testing autonomous drones

2017 IEEE/ACM 2nd International Workshop on Metamorphic Testing (MET)

Metamorphic Model-based Testing of Autonomous Systems

Mikael Lindvall Adam Porter Gudjon Magnusson Christoph Schulze
Fraunhofer CESE Fraunhofer CESE Fraunhofer CESE Fraunhofer CESE
5825 Univ. Research Ct 5825 Univ. Research Ct 5825 Univ. Research Ct 5825 Univ. Research Ct
College Park, Maryland College Park, Maryland College Park, Maryland College Park, Maryland

mikli@fc-md.umd.edu aporter@fc-md.umd.edu GMagnusson(@fc-md.umd.edu cschulze@fe-md.umd.edu

MT: Pros/Cons

+ Automated powerful testing method
+ Multiple MRs can be combined altogether

+ Lightweight method, easy to setup and
deploy (once MRs have been identified)

+ Successful in testing ML models

- Designing MRs often require
domain knowledge

- MRs have different fault-
revealing capabilities

- Shallow underlying theory,
lack of foundations

- Not yet used for systematically
testing critical programs

88

Remaining Challenges

Lack of foundational theory
Need for automatic finding and selection of MRs

MT for performance (execution time, energy consumption)
is not yet sufficiently developed

MT of Collaborative Robots

89

First Synthesis

In the industrial world, software systems are mostly validated with
software testing (no model checking, no correction proof)

Code-based testing (Testing criteria, MCDC) has a long-term
tradition and it has been popularized with dynamic symbolic
execution (DSE) which combine coverage and SE

Metamorphic Testing is crucial and fruitful technique to deal
with the oracle problem

Numerous tools, methods and approaches exist. That background
cannot be ignored when engaging new research works

Still, open challenges remain...
2023 EJCP 90

2023

Course Overview

Software Testing Introduction

Code-based Testing
Testing of Autonomous Systems

Open Challenges in Software Testing

EJCP

91

Autonomous Software-Systems

« Systems which have a certain degree of self-decision capabilities,
e.g., self-driving cars, industrial robots, smart transportation systems,...

« Systems with increased capabilities of planning (what, how), scheduling (when, who) and
executing complex functions, with limited human intervention, managing unexpected events,
such as faults or hazards

* Not equal to automated systems, which have limited capacity to learn and adapt to
unexpected events

* In robotics and automated driving, the main focus for autonomy is to complement human’s
capacity to take decisions based on vast amounts of uncertain raw data

IEEE Spectrum — Self-driving car Universal Robot — UR3

16 18

Vara Birkeland | &Y

Al in the 5 Pilars of Autonomous Systems

Computer
Vision
Pattern
Recognition

Natural
Language
Processing

Conceptual
Graphs

Conditional
Preference
Networks

Deep Learning
Reinfocement
Learning

Constraint
Programming

Multi-Criteria
Decision

Al for Continuous Testi

Testing Al Systems
[|

Al for Testing Al

ng

Multi-Agent
Systems

Human-
Machine
Interactions

Al Planning
Optimization

Scheduling

Norwegian Yara Birkeland

This electrical autonomous i

cargo vessel will transport Norwegian shore
fertiliser from Yara's s

Porsgrunn plant via inland .
waterways to the deep-sea L g
ports of Larvik and Brevik (31 '
nautical miles). Removing up
to 40,000 truck journeys " e Bl i
annually.

Automated Mooring System

-

The system is based on a seven-axis robotic
arm that takes the mooring ropes with loops
and wraps them around bollards on the dock.
The mooring system has redundant
kinematics, with built-in movement
compensation and track planning.

The vessel’s position against the quay will
inform the robotic arm where each bollard is :
located, and the track planning is Source: MacGregor Inc.
automatically generated by the control

system.

Testing Non-testable Autonomous Systems

» Testing perception systems needs to generate tests with (environment)
hazards

» Test coverage over high-dimensional inputs is limited
* Non-linear motion planning involves solving complex constraint models
» Validation of learning systems needs test oracles which can hardly be defined

« Continuous testing is key but needs high control and more diversity

Timeline

\
\

An ldeal Cycle of Continuous Integration and
Its Timing Challenges

commit » Test Case Selection/Generaty/’{
Developer Test Suite Reduction
feedback y

Build

» Test Case Prioritization

— Test Execution Schedulin

+ Test Execution ,
v

—

Deployment of “Intelligent” Continuous Testing

Constraint Programming 1 . TeSt
Suite
Reduction

2. Test

Constraint-based

Execution Scheduling
Scheduling

3. ML for testing

Input | |] " N Q\ O\
autonomous g, \/ LYY AN
tnpu 2, @ KX/ VKT \RK] N0
=L Systems N

\ o) \NA /
L N o N XN/ -
WAy, ANTA " TANIA 4 X
N\ OSGEOGHO< N\
Actions:
Test Suite] | rewar d Prioritized
K

- XN \Ji\/ \\/
- '// /\(. “ >('. \
Test Cases

. . \ QOutput 1
/.. \ W/ ¥\ - >
Input n f7/ \ . (‘:'I . .'":, . ,/"/O
«f Environment: @ 9 ¥
«=| Cl Cycle

Reinforcement Learning

Artificial Neural Networks

Optimal Test Suite Reduction

F.. Requirements
TC: Test Cases

Optimally Reduced
0" Test Suite

/\ S
(50
» Similar to the Vertex

Cover problem in a <
bipartite graph

NP-hard
problem!

Constraint Programming (CP)

Domain gonsfrairqt
Filtering ropagation
L/' Variable
Labeling

o CPis versatile: user-defined constraints, dedicated solvers,
programming search heuristics but it is not a silver bullet
(developing efficient CP models and heuristics requires expertise)

e Routinely used in Validation & Verification,
CP handles efficiently hundreds of thousands
of constraints and variables

— Global constraints: relations over a non-fixed number
of variables, implementing dedicated filtering algorithms

The nvalue global constraint

[Pachet Roy 1999, Beldiceanu 01]

nvalue(N, V)

Where:

N is a finite-domain variable
V=[Vy .. V] is a vector of variables

nvalue(N, V) holdsiff N=card({V},;,,:)

nvalue(N, [3, 1, 3]) entails N=2

nvalue(3, [X,, X,]) fails

nvalue(l, [X;, X, X5]) entails X;=X,=X;

Nin 1..2, nvalue(N, [4, 7, X,]) entails X; in {4,7}, N=2

Optimal Test Suite Reduction with nvalue

However,
only F, F,, F5
are available
for labeling!

Sol: F,=2,F,=3,F,=2
Optimally Reduced Test Suite

F,in{1, 2,6}, F,in{3,4}, Fyin {2, 5}
nvalue(MaxNvalue, [F,, F,, F;])
Minimize(MaxNvalue)

The global cardinality constraint (gcc)
[Regin AAAI'96]

gcc(T, d, V)

Where

T=1[Ty ..., Ty] is a vector of N variables
d =[dy, ..., d.] is a vector of k values
V=1V, .., V,] is a vector of k variables

Vi in 1..k,

gec(T, d, V) holds iff V.= card({j | T=di})

Filtering algorithms for gcc are based on max-flow computations

Mixt model using gcc and nvalue

F,in{1, 2,6}, F,in{3,4}, F,in{2, 5}
gCC([F]_I Fz; F3]1 [1;2;3;4;5;6]1 [Vlr Vz; V3) V4) V5) V6])
nvalue(MaxNvalue, [F,, F,, F;])
Minimize(MaxNvalue)

Model pre-processing

F,in{1,2,6}>F, =2

as cov(TC,) < cov(TC,) and cov(TC,) < cov(TC,)
withdraw TC, and TC,

F, is covered = withdraw TC,

F,in {3,4} 2 e.g., F, = 3, withdraw TC,

Pre-processing rules can be expressed once
and then applied iteratively

000
@ EEOO6

Comparison with CPLEX, MiniSAT, Greedy (uniform costs)

(Reduced Test Suite percentage in 60 sec)

g_

[T
= . - ==
5_

=
y = ==
H T
% o i
g _ ==
4 = ==
= =
N T
==
27 ——
1_
TDI TD2 TD3 TD4

Requirements 1000 1000 1000 2000

Test cases 2000 5000 5000 5000

Density 20 7 20 20

A. Gotlieb and D. Marijan - FLOWER: Optimal Test Suite Reduction As a Network Maximum Flow — ACM Int. Symp. on Soft.
Testing and Analysis (ISSTA'14), San José, CA, Jul. 2014.
A. Gotlieb and D. Marijan - Using Global Constraints to Automate Regression Testing - Al Magazine 38, no. Spring (2017).

Other Criteria to Minimize

1 min
Requirement coverage

is always a prerequiste _
5 min
Optimally Reduced
Test Suite

3 min

3 min
1 min

1 min

Execution time!

A Gotlieb, M Carlsson, D Marijan, A Petillon. A New Approach to Feature-based Test Suite Reduction in
Software Product Line Testing. ICSOFT-EA 2016. Best paper award. Scitepress.org

Deployment of “Intelligent” Continuous Testing

Constraint Programming 1 . TeSt
Suite
Reduction

2. Test

Constraint-based

Execution Scheduling
Scheduling

3. ML for testing

Input | |] " N Q\ O\
autonomous g, \/ LYY AN
tnpu 2, @ KX/ VKT \RK] N0
=L Systems N

\ o) \NA /
L N o N XN/ -
WAy, ANTA " TANIA 4 X
N\ OSGEOGHO< N\
Actions:
Test Suite] | rewar d Prioritized
K

- XN \Ji\/ \\/
- '// /\(. “ >('. \
Test Cases

. . \ QOutput 1
/.. \ W/ ¥\ - >
Input n f7/ \ . (‘:'I . .'":, . ,/"/O
«f Environment: @ 9 ¥
«=| Cl Cycle

Reinforcement Learning

Artificial Neural Networks

107

Test Selection and Test Suite Reduction: An Example at
ABB Robotics

PRODUCT BASIC SPECIFICATIONS PRODUCT BASIC SPECIFICATIONS
IRB 14000 Load (kg) 0.50 IRB 1200 Load (kg) 5.00 7.00
YuMi® Reach(m) 0.559 . Reach(m) 0.90 0.70
‘~4I .
Protection Std:IP30; Clean room ISO 5 1 Protection Std: P40
. > Option: IP67, Clean room ISO
Mounting Bench, table “§ 4, food grade lubricant
Safety PLbCatB ‘J Mounting Anyangle
IRB 14050 Load (kg) 0.50 IRB 140 and Load (kg) 6.00
Single Arm YuMi Reach(m) 0.559 IRB 140T Reach(m) 0.81
o Protection Std:IP30; Clean room I1SO 5 Lo, Protection Std: IP67
\i_-;ﬁ Option: Cleanroom class 6,
o Mounting Any angle - table, wall, ceiling “;.,) Foundry Plus
- Safety PLdCat3,PLbCatb, “é Mounting Floor, wall, inverted, and
- SafeMove Pro option tilted angles
IRB 1100 Load (kg) 400 4.00 IRB 1600 Load (kg) 6.00 6.00 10.0 10.0
Reach (m) 0.475 0.58 \ Reach (m) 1.20 1.45 1.20 1.45
;.'/’ Armload (kg) 0.50 0.50 ~ Protection Std: IP54
¥ : 4 Option: IP67 with foundry
. Protection Std: P40 R plus 2
o
%,‘1 I Mounting Any angle g‘\ Mounting Floor, wall, inverted, tilted
' . angles, and shelf
IRB 120 and Load (kg) 3.00 IRB 1660I1D Load (kg) 4.00 6.00
IRB 120T Reach(m) 0.58 o > Reach(m) 155 155 10..30 code changes per day
Protection Std: IP30) Protection Std: IP40 (wrist IP67)
Option: Cleanroom class 5,
certified by IPA : J
Mounting Floor, wall, inverted, and > :,.4{5 Mounting Floor, wall, inverted, and
tilted angles - tilted angles

- Select, schedule and execute about 150 TC per Cl cycle

Constraint-Based Scheduling

Tasks
with distinct
characteristics

Agents
with limited time or
resources capacity

Assignment of Tasks to Agents such that:

1. Task execution is not interrupted or paused
2. Agents are maximally occupied

3. Tasks sharing a global resource are not
executed at the same time

4. Diversity of assignment of tasks to agents is
ensured

Goal:

Schedule as much tasks as possible on available agents
such that the overall execution time is minimized

Test Case Execution Scheduling

(T, M, G,d, g, 1)

T: a set of Test Cases
M: a set of Machines, e.g., robots
G: a set of (non-shareable) resources

d: T = N estimated duration
g: T = 2% usage of global resources
f: T 2 2M possible machines

Function to optimize:

TimeSpan: the overall duration of test execution T,

(in order to minimize the round-trip time)

Disjunctive scheduling, non-
preemptive,

non-shareable resources,
machine-independant
execution time

In practice, global optimality is desired but not mandatory, it’s more important to control Ts w.r.t Te

—> Time-contract global optimization

d f g

m3
Test Druration Excecutable on Use of global resource)
tl 2 ml, m2, mad - =
t2 4 ml, m2, mad rl J@
A simple t3 3 m1, m2,m3 rl -
example td 4 ml, m2, ma rl
47} 3 ml, m2, ma -
L 2 ml, m2, md -
tT 1 mel -
td 2 m2 -
td 3 md -
t10 3 mel, md -

H

Test Cases: t1, t2, t3, t4, t5, t6, t/, 18, 19, t9, t10

The CUMULATIVE global constraint
[Aggoun & Beldiceanu AAAI'93]

CUMULATIVE(t, d, r, m)

WhEE
t=(t, ..., ty) is a vector of tasks, each t;in S; .. E;
d=(, ..., dy) is a vector of task duration

r=(ry, ..., ry) is a vector of resource consumption rates
m is a scalar

N
CumuLative (t, d, r, m) holds iff Z r,=m

i=1
t<t<t+d,

Using the global constraint CUMULATIVE

Test Dreration Executable on U=z of global resournos
CUMULATl_VE((tl,..,tlo), (dy,..,dyp), (1, ..,1), 3), e N
|\/|1,..,|\/|6 N 1..3, t3 3 ml, m2, m3 1
M, =1, Mg =2, My =3, My, in{1,3}, e "
(Es<S,0r E;<S5), M : o
Max(MaxSpan, (E;, ..., Eyp)), ta 3 m3
5 ml, m3

LABEL(MINIMizE(MaxSpan), (Sy,-.,S10), (My,..,My,)) 10

An optimal solution:
$:=0,5,=4,5;,=8,5,=0,5.=4,5,=7,5,=2,5,=9,
Si0=3,

Mi=1L,M,=1,M;=1M,=2,M; =2, My =2, M, =1,
Mg=2,Mg=3,M;;=3

MaxSpan = 11

M Mossige, A Gotlieb, H Spieker, H Meling. Time-aware test case execution scheduling for cyber-physical

systems. Principles and Practice of Constraint Programming, Melbourne, 2017

Limitations of this model

Static model — In practice, robots and test cases are not necessarily
available at each Cl cycle 2 Need a more dynamic model!

Historical data about test case success/failure is not taken into
consideration!

Diversity in scheduling among Cl cycles is not handled

A New Approach Based on Priority and Affinity

- Test results fror; n‘/F . Modeled as a Multi-Cycles Assignment Problem
greevvelrouserrunrs}ériiss 2 Computing priorities based on A, B, C (Priority)
' e ’ Combined with D (Affinity) with several heuristics

. Test duration _
e dfirae B e Incremental solving from Cl cycle to Cl cycle

Affinity: more diversity In the test execution process

O T
’ 3 cycles

= Since last
exec.

10 cycles since last 2 cycles since last
- exec. 5 | exec.

o — 1 cycle
0 cycle f o
_ . since last
since last - s

- L exec.

~—

exec.

Rotational Diversity

Definition 1. Multi-Cycle General Assignment Problem

Maximize E E TijVij

icA* jeTk

subject to Z Tijwi; < by, Vie A"
JETk
Z zi; <1, Vie Tk
i Ak

with
k : Index of the current cycle
AP A set of integers i labeling m agents
T : A set of integers j labeling 7. tasks
b; : Capacity of agent i
v;; : Value of task j when assigned to agent i
w;; - Weight of task 7 on agent ¢
- J1 Task jisassigned to agenti Ai € C;.‘"
KA {O otherwise

(1)

(2)

3)

4)

(5)

Profit (% of FOP)

100

95

90

85

80

. R A
Priority only (FOP) vij = pij
. AN
Affinity only (FOA) Vij = Qjj
.. . A | Pij ifvy > max, ¢k AP?
Objective Switch (OS) Vij = ,
a;; otherwise
) . A« B8
Product Combination (PC) Vij = Dij * Q45
Weighted Partial Profits (WPP)
A Nk Pij k Wij
max max pj 4 max max g
i€ Ak jeTk i€ Ak jEeTk
Agents 20 20 20 30
Tasks 750 1500 3000 3000 Total
é + % —l— FOA 15(244) 6157 3(9.5) 3(8.5) 27(14.5
0S§/10 14(22.2) 6(155) 3094 3(84) 26(13.9)
¢ 08/20 9(18.6) 6(15.3) 3(9.2) 3(83) 21(12.9)
@ - 0S8/30 7(16.9) 5(14.3) 3(9.1) 3(8.1) 18(12.D
l 0840 7(162) 4(13.1) 3@|89) 3(7.9) 17(115)
PC 15(24.00 7(144) 3(83) 3(7.5) 28(13.6)
WPP 1424.1) 7(142) 3(7.3) 3(7.0) 27(13.2)
FOP 3(15.7)y 0(10.8) 0(7.1) 04.6) 3(9.6)

FOA PC 0OS/10 0OS/20 OS/30 OS/40 WPP

Strategy (b) Diversity: Full rotations of all tasks (Avg. rotations per task)

SWMOD: Deployment of Time-aware Test Case Execution
Scheduling at ABB Robotics

- ~1500 lines of SICStus Prolog Code with CP(FD) Visualstudio @ python SlGSt4u's
- Fully integrated into the MS-TFS Continuous Integration feam Foundation erver

- Using the global constraint binpacking + rotational diversity

- Deployed at ABB since Feb. 2019

CP with global constraints (cumulative, binpacking) and rotational diversity
can solve the test execution scheduling problem

Constraint-based Scheduling

“ ll ll “SWMOD deployed at ABB Robotics and used every day to schedule tests
" .. l. throughout several ABB centers in the world (Norway, Sweden, India, China)”

H. Spieker, A. Gotlieb and M. Mossige - Rotational Diversity in Multi-Cycle Assignment Problems - In Proc. of the Thirty-Third AAA|
Conference on Artificial Intelligence (AAAI-19). Feb. 20189.

Deployment of “Intelligent” Continuous Testing

Constraint Programming 1 . TeSt
Suite
Reduction

2. Test

Constraint-based

Execution Scheduling
Scheduling

3. ML for testing

Input | |] " N Q\ O\
autonomous g, \/ LYY AN
tnpu 2, @ KX/ VKT \RK] N0
=L Systems N

\ o) \NA /
L N o N XN/ -
WAy, ANTA " TANIA 4 X
N\ OSGEOGHO< N\
Actions:
Test Suite] | rewar d Prioritized
K

- XN \Ji\/ \\/
- '// /\(. “ >('. \
Test Cases

. . \ QOutput 1
/.. \ W/ ¥\ - >
Input n f7/ \ . (‘:'I . .'":, . ,/"/O
«f Environment: @ 9 ¥
«=| Cl Cycle

Reinforcement Learning

Artificial Neural Networks

119

Test Prioritization: Learning from previous test runs

Motivation:
Adapting priorities to the most interesting test cases based on past test verdicts (from previous Cl cycles)

* Considering test case meta-data only (test verdicts, execution time, ...)
* Limited memory of past executions / test verdicts

* Using Reinforcement Learning for priorising test cases Implemented with tWO

distinct memory models
(tableau, ANN) and three

> [Agent

States: = reward functions
Test Suite reward
T &
I FJ'+.’ [E 1 - i
P nvironment:
: r."'l_l_lr "_

Cl Cycle

3 Industrial data sets (1 year of Cl cycles)

Rewa rd FU nCtionS d nd NAPFD: Normalized Average Percentage of Faults Detected
Experimental Evaluation

ABB Paint Control ABB IOF/ROL GSDTSR
(a) Failure Count Reward

1.0

— — Tableau

m— Network
o
Reward Function 1. Failure Count Reward %
Z
reward/**(t) = | TSI (Vt e Ti)
o
Reward Function 2. Test Case Faitlure Reward &
S
_ 1 — t.verdict; ifteTS;
reward:cfm(t} = .
0 otherwise
Reward Function 3. Time-ranked Reward A
=
=
Z

reward{"™(t) = |TSI*| — t.verdict; x Z 1

tpE 'TS{““A
rank(t)<rank(ty)

H. Spieker, A. Gotlieb, D. Marijan and M. Mossige Reinforcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’17). New York, NY, USA: ACM, 2017.

Adaptive Metamorphic Testing

Motivation: Learning which Metamorphic Relation works best to test
vision-based systems

Input layer ; Hidden layers Output layer

4) iRobot Rumba

Artificial Neural Networks

7) Riba Medical Robot 8) TALON [9) Zoomer Robot Dog

TensorFlow.org - Image classification — dataset of 10,000 images Object Detection case study — MS COCO dataset of 5,000
images

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Avg.

Blur 10.60 11.40 13.10 9.81 7.30 13.50 17.70 9.00 6.00 6.20 10.46
Flip L/R 2.90 1.00 110 6.71 2.20 6.80 1.30 2.40 0.90 2.40 3.07
Flip U/D 14.90 74.60 37.80 33.13 59.10 53.90 29.30 9240 7220 43.30 51.06

B Tetraband Grayscale 1.70 5.40 28.10 791 1810 26.00 14.30 6.70 1.80 5.30 1213

Using Contextual Bandits
(Reinforcement Learning) to

20

10 B Baseline Invert 16.50 2040 2950 33.13 4140 7030 41.80 3830 27.30 3570 36.33
Iea rn h ow to se I ect 0 Rotation 25,49 37.00 3543 17.70 69.00 4610 20.63 60.44 4244 50.01 40.43
Shear 11.22 09 2669 3579 4545 51.97 1563 4024 1978 55.24 30.70
I 4 4 4 4
&
. . \s{- 42:-\\} _}\\e" 519 xqg’b NI _&zf'\' 0@ Avg. 12.33 23.41 24.96 2060 34.65 3837 20.10 3564 2477 2831 26.31
. &S
metamorphic relations S8 S & &Y
< (&) & & Q_o & ¥ Table 1: CIFAR-10 dataset: Effects of MRs by the true class of the image. Each cell value shows the percentage of images

rongly classified after applying the MR. Every class contains 1000 images. Rotation and Shear are

- Adaptive Metamorphic Testing @ m cusicaion

H. Spieker, A. Gotlieb — Adaptive Metamorphic Testing with Contextual Bandits — Journal of Systems and Software. 165: 110 (2020)
A. Gotlieb, D. Marijan and H. Spieker: Testing Industrial Robotic Systems: A New Battlefield!

In Software Engineering for Robotics, 465p. Edited by A. Cavalcanti, B. Dongol, R. Hierons, J. Timmis, J. Woodcock ed. Springer Nature,
2021.

Take Away Message

Testing autonomous systems brings new interesting challenges for
software V&V research

Some Al techniques such as Constraint Programming (CP) and
global constraints are already very successful in test case generation,
test suite reduction and test execution scheduling

Testing autonomous systems such as
collaborative robots or self-driving cars AP T
is challenging as: Blaets pseS Af g

- Expected behaviours cannot be
specified in advance

- Interactions with humans involve
more safety issues

dlarifies of the outhor

authorisotion

(C) Copyright 2017 CERTUS Centre No copy or of reproduction

Us Cenfre on Software Validation and Verification

without

2023

Course Overview

Software Testing Introduction

Code-based Testing
Testing of Autonomous Systems

Open Challenges in Software Testing

EJCP

124

Testing Neuro-Symbolic Al models

Neuro-symbolic Al models combine NN (CNN, RNN, LSTM
Transformers, etc.) with symbolic reasoning to improve

1. The perf. of classification/regression models in ML

2. The explicability of NN models

Besides the oracle problem, testing these models is challenging
as it it requires to quantify the benefice of each part (NN vs
Symbolic)

Testing the guality/interest of explanations is an open research
guestion — An overall field has been created, the field of XAl

Testing Al model Trustworthiness (1)

Need to adopt a definition

A.

g —
High Level Expert " Respect for ‘\-.
S L Human

“\n_...\ Autonemy ,,-"j

—1
[]

Prevention of
harm

Trustworthy Al

of Trustworthy Al (e.g., EU HLEG Al)

Human agency and
aversight

Diversity, non-
diserimination and
fairness

Societal and
environmental well-being

Accountability

Transparency

Privacy and data
FoVErnance

Technical robustness and
safaty

Technical
Methods

Technical
Methods

Architecture for Trustworthy Al
Ethics and rule of law by design
Explanation methods

Testing and validating

Data Quality Management

Cwality of Service indicators
Regulation - Code of conduct
Standardization - Certification

¥ Via governance
framewaorks

Education and awareness to foster

an ethical mind-set

Stakeholder participation and
sacial dialogue

Diversity and inclusive design
teams

“On 14 June 2023, MEPs adopted Parliament’s negotiating position on the Al Act. The talks will now begin with EU countries in

the Council on the final form of the low.” neep=:/¢

FWWW . BUrOpATL EUropa . =

Testing Al model Trustworthiness: A Research Programme

5

Transparency P N

Privacy and
data
governance

Conformance Testing

Acountability

Human agency
and

oversight

<O

(%)
DY A
non-discrimination

Diversity,

and
Fairness

Technical
robustness
and safety

Societal and
environmental
well-being

s|mu|a Thrd Yo for Vosur Aftenion
VIAS Dept.

Validation Intelligence for Autonomous Software-Systems

Arnaud GOTLIEB

VIAS explores how to test the robustness, reliability, and transparency of software-systems (industrial robots, self-
driving cars, navigation systems, etc.) with intelligent methods

1. Trustworthy Artificial Intelligence for Autonomous Systems

2. Testing Intelligent Transport Systems
3. Learning and Reasoning for Data-Intensive Systems

April 2023 (11 employees): 3 permanent researchers, 5 postdocs, 3 PhDs, 3 external PhDs + 2 ongoing recruitments

Funded by EC: AI4CCAM (HEU, Coordination, 2023-25), TRANSACT (ECSEL, 21-24), MARS (HEU, 23-26), CERTIFAI (HEU, 23-26)
Funded by RCN: T-Largo (2019-22), T3AS (19-22), SMARTMED (19-22), TSAR (19-23), AutoCSP (21-24)

RESIST_EA: 15t Inria-Simula Associate Team on Resilience of Software Systems (2021-2024)

simula h,u’a’_ CX) I)?el\l E(re\fvi\?/rCh Council

	Slide 1
	Slide 2: Course Overview
	Slide 3
	Slide 4: 9/9/1947
	Slide 5: 1960-80: Testing = Debugging
	Slide 6: 1980-90: Testing = Destruction
	Slide 7: 1990-2000: Testing = Fault Prevention
	Slide 8
	Slide 9
	Slide 10: Software testing in the V software developpement process:
	Slide 11: 2000-2010 : Testing = Model-Based Testing (MBT)
	Slide 12: 2010-2020: Testing = Agile Testing/Test-Driven Dev. (TDD)
	Slide 13: 2020-20..: Testing = Intelligent Testing / AI-driven Testing
	Slide 14: Terminology (IEEE Standard Glossary of SE, BCS’s standard for Softw. Testing)
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Course Overview
	Slide 28
	Slide 29: 1. TESTING CRITERIA
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Measuring code coverage
	Slide 41: 2. DECISION TESTING
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: From the Galileo development standard
	Slide 50: 3. Automatic Test Input Generation
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Constraint Solving in Symbolic Evaluation
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Example (1)
	Slide 71: Example (2)
	Slide 72: Example (3)
	Slide 73: Example (4)
	Slide 74: Example (5)
	Slide 75: Dynamic Symbolic Execution: Discussion
	Slide 76
	Slide 77: 4. Metamorphic Testing
	Slide 78: Non-testable programs [Weyuker TSE 82]
	Slide 79: Metamorphic Testing [Chen et al. 98]
	Slide 80: Graph Theory
	Slide 81: Search Engines
	Slide 82: Main Usages
	Slide 83
	Slide 84: Strategies for Finding Metamorphic Relations
	Slide 85: Applications of MT (1/3)
	Slide 86: Applications of MT (2/3)
	Slide 87: Applications of MT (3/3)
	Slide 88: MT: Pros/Cons
	Slide 89: Remaining Challenges
	Slide 90: First Synthesis
	Slide 91: Course Overview
	Slide 92
	Slide 93
	Slide 94: Norwegian Yara Birkeland
	Slide 95: Testing Non-testable Autonomous Systems
	Slide 96
	Slide 97
	Slide 98: Optimal Test Suite Reduction
	Slide 99
	Slide 100: The nvalue global constraint [Pachet Roy 1999, Beldiceanu 01]
	Slide 101
	Slide 102: The global_cardinality constraint (gcc) [Regin AAAI’96]
	Slide 103
	Slide 104: Model pre-processing
	Slide 105
	Slide 106: Other Criteria to Minimize
	Slide 107
	Slide 108
	Slide 109
	Slide 110: Test Case Execution Scheduling
	Slide 111
	Slide 112: The Cumulative global constraint [Aggoun & Beldiceanu AAAI’93]
	Slide 113
	Slide 114
	Slide 115: A New Approach Based on Priority and Affinity
	Slide 116: Affinity: more diversity in the test execution process
	Slide 117: Rotational Diversity
	Slide 118: SWMOD: Deployment of Time-aware Test Case Execution Scheduling at ABB Robotics
	Slide 119
	Slide 120
	Slide 121
	Slide 122: Adaptive Metamorphic Testing
	Slide 123: Take Away Message
	Slide 124: Course Overview
	Slide 125: Testing Neuro-Symbolic AI models
	Slide 126: Testing AI model Trustworthiness (1)
	Slide 127: Testing AI model Trustworthiness: A Research Programme
	Slide 128: Validation Intelligence for Autonomous Software-Systems

