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1960-80: Testing = Debugging

What have we learnt since then?

Causality: Error = Fault - Failure

In fact, 3 distinct activities:

* Failure detection (Testing purpose)

* Fault localization (Debugging purpose)
* Error correction (Debugging purpose)

EJCP



1980-90: Testing = Destruction

“Testing is the process of executing a program with the intent of
finding errors” [G. Myers The Art of Software Testing 1979]

Consequently:

validation team # development team
But, there is no specification to test the program against

That dogmatic position was progressively given up!
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1990-2000: Testing = Fault Prevention

“To convince that a program conforms to its specifications by
using static or dynamic analysis techniques”

- Program analysis - Control: Property checking
Before execution

- Program execution - Testing: Result evaluation
After execution

2023 EJCP 7
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Software testing in the V software
developpement process:

Requirements - Usage &
\ acceptance testing

System testing

(performence, load, robustness, security testing)

Architecture & system

\

Functional specifications — Unit & Integration testing

\

2023 EJCP 10

Coding design



2000-2010 : Testing = Model-Based Testing (MBT)

[
C_ User Requirements > o manual ... Modelisation
. DEV | TEST
[
[
Specification and I
development i Test Model
[ (formal, graphical)
: StateCharts, B, UML,...
[
I Automatic Test Case
: : Generation
’ |
Program under \ . : autom. | Executable
test Validation test scripts

MBT added-value: Build a (test) model instead of test cases to validate/verify the program
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2010-2020: Testing = Agile Testing/Test-Driven Dev. (TDD)

| .
@Require@ ................................... manual . Coding
: DEV ! TEST
Unit/Integration
Tests

Specification and
development

v

Program under Autom. | EXecutable
test ) > | test scripts
Validation

Writing tests instead of a specification model is
considered more agile
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2020-20..: Testing = Intelligent Testing / Al-driven Testing

Specification and
development :

\

Program unde
test

Autom. Al-based test generation and

DEV

TEST

Autom.

r)

>

Validation

Maintenance based on:
1. Historical data

2. Simulated data

3. Synthetized data

\ 4

Unit Tests

Executable
test scripts

Al is revolutionizing the way software systems are developed and tested

2023
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Terminology
(IEEE Standard Glossary of SE, BCS’s standard for Softw. Testing)

Validation: “The process of evaluating software at the end
of software development to ensure compliance with intented
usage” -- Are we developing the right product ?

Verification: “The process of determining whether the
products of a given phase of the software development
process fulfill the requirements established during the
previous phase” -- Are we developing the product right ?

Testing: “Evaluating software by observing its execution”

2023 EJCP
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Program Testing: Our Definition

- Testing = Execute a program P to detect faults,

which are non-conformities w.r.t. the program
specification F

- Looking for counter-examples:

1?X tq P(X) # F(X)

EJCP
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Program Correction: Fundamental Limitation

Impossibility to demonstrate the correction of a program in the general
case as a consequence of the undecidability of the Halting problem

of a Turing machine

“Program Testing can be used to prove the presence of bugs, but never
their absence” [Dijkstra 74]

PS : Expert developer > ~1fault/ 10 LOC
~163 faults / 1000 instructions

[B. Beizer Software Testing Technigues 1990]

2023 EJCP 16



Test Process

Program P

|
_— T

Inputs Oracle Outputs

\ L
|

Verdict: passl or failX
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Oracle Problem :
How to verify the computed outcomes?

In Theory:
- By predicting the expected result
- By using a formulae extracted from the specification

- By using another program
- By using known properties about multiple executions of the program

In Practice :

- Approximative predictions (due to floating-point computations,...)
- Unknown formula (because Program = Formulae)

- Non bug-free oracles and incorrect properties

2023 EJCP 18



Test Input Selection Problem
How to choose inputs for testing?

A. Black-box Testing: Using sepcifications to generate test inputs

= - =

B. Code-Based Testing: Using the program code and structure

—— | <00 | =

2023 EJCP 19



A. Black-box Testing

Using a specification model:
- Informal (Partition Testing, Boundary Testing, ...)

- Half-formal (Use cases, Sequence diagrams, UML/OCL,
Causes/effects graphs...)

- Formal (Algebraic specifications, B Machines, Transition
systems, IOLTS, ...)

2023 EJCP
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B. Code-Based Testing

Using a model computed from the source code of the program under
test

- model = Internal representation of the program structure

- Heavy usage of Graph Theory, in particular, coverage techniques

2023 EJCP 21



Code-Based Testing is indispensable (1)

Specification:
Return the product of

I by |

(i=0,j=0)-->0
(i = 10, j = 100) -->1000

--> 0K

2023

prod(int 1,int 7J )
{
int k ;
1f( 1==2 )
k 1= 1 << 1 ;
else

(...)

return k ;

EJCP 22




Code-Based Testing is indispensable! (2)

Specifications :
renvoie le produit de
| par |

(i=0,j=0)-->0
(i = 10, j = 100) -->1000

/

Undetected fault if only
black-box testing is

prod (int 1,1nt 7
{
int k ;
1f( 1==2 )

/////” k 1 << 1
else

(.)

return k ;

used par

)

°
’

patch 2 k j << 1

2023

EJCP
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Regression Testing
Test Set 3

Test Set 2

Test Set 1 ‘\\\\_

New
Tests

Regression
Tests

2023 EJCP 24
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1. TESTING CRITERIA

EJCP
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Internal Representations

Program Structure Abstractions

- Control Flow Graph (CFG)

- Def/Use Graph

- Program Dependence Graph

2023 EJCP
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Control Flow Graph (CFG)

Oriented and connex graph (N, A, e, s) where

N: set of nodes =
Instructions block sequentially executed

E: set of arcs, N x N relation,
Some arcs are labelled with {T, F} = Possible branching of the
control flow

e: Program input node

s: Program output node

2023 EJCP
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Control Flow Graph (CFG): Example

double P(short x, short y) {

short w = abs(y) ;
doublez =1.0;

while (w!=0)
{

Z*X;

w-1;

Z
W
}
if (y<0)
z=10/z;
return(z) ;

¥

2023 EJCP
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Structural Criterion: All _nodes | All_statements

Motivation: To cover all program instructions @

at least once during testing /5
e
Def. A subset C of program paths of the CFG
(N, A, e, s) satisfies All_ nodes
Iff vn € N, 3C, € C
such that n is a node of C,

/

@)

Example: Here, only one path is necessary
a-b-c-b-d-e-f [6/6 nodes]

o

2023 EJCP 33



Structural Criterion: All_arcs | All_decisions

(N,A, e, s) satisfies All _arcs
Iff va € A, 3C, € C
such that a Is an arc of C; /

least once during testing /5
Def: A subset C of paths of the CFG : b

Motivation: To cover all program decisions at @

Example: Here, 2 paths are necessary

©)
a-b-c-b-d-e-f [6/7 arcs]

a-b-d-f [3/7 arcs] | /
®)

2023 EJCP 34




Structural Criterion: All_simple_paths | All k paths

Motivation: To cover all execution paths which do not
iterate more than once in loops or do not exceed a

given length @
Example: Here, 4 simple paths are necessary fbg
to cover All_simple paths
a-b-d-£f
a-b-d-e-f /

a-b-c-b-d-f
a-b-c-b-d-e-f
Example: 2 paths are necessary to cover All_5 paths
(Paths with less than 5 instruction blocs)

a-pb-d-f
a-b-d-e-1f

2023 EJCP
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Structural Criterion: All _paths

Def. A set C of paths of the CFG (N, A, e, s)

satisfies all_paths if C contains all paths from
e 10s

Here, it iIs Impossible as there is an « of
paths. Note also that some paths may be
Infeasible!

All _paths is stronger than All _k_paths
All_k paths is stronger than All _arcs

All _arcs is stronger than All_nodes

2023 EJCP
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Executed Path: exec (P, X)

o P(short x,y)
Principle: short w= abs(y

X executes a single path of the CFG (no double z= 1.0
concurrency, no dynamic bindings)

Def. Sequence of CFG nodes, not necessarily

finite, followed by the execution flow when
P Is feeded with X as input

Examples:

exec (P, (0,0)) =a-b-d-£ 7=1.0 / 2

exec (P, (3,2)) =a-b-(c-b) ?-d-=£ /
return(z@

2023 EJCP 37



Infeasible Path Problem

P(short x,y)

short w= abs(y)
Let c be a CFG path of P, double z= 1.0
Does X exist such that c=exec (P, X) ?

Here, a-b-d-e-f Is infeasible!

Weyuker 79

Determining if a node, an arc, or a path of
the CFG is feasible is undecideable in the
general case

Sketch of proof: Reduction to the Halting
problem of a Turing Machine

2023 EJCP



Exercise:

Find the infeasible paths of the program

P(short x)
}a) X >0
@ Y f

£ 5

2023 @ EJCP
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Measuring code coverage

3 distinct techniques
- Instrumenting source code
+ Easy to implement
+ Powerful as everything regarding executions can be
recorded
- Add untrusted code in trusted source code

- Instrumenting binary code
+ Do not modify source code
- Difficult to implement

- Use a debugger
+ Do not modify source code
- Specific to each compiler

2023 EJCP 40
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2. DECISION TESTING
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Condition / Decision in a Program

Condition (bool., Arith. expr.,

/\\

1f( A &&

- J
hd

Decision
(Logical predicate in a control structure of the program)

Notation: DeC is the truth value of the decision

2023 EJCP
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Some Testing Criteria associated to Decisions

if( A && (B || C))
1. Decision Criterion (DC): A=1,B=1,C=0 - Dec=1
A=0,B=0,C=0 - Dec=0

2. Condition Criterion (CC) : A=1,B=1,C=0 - Dec=1

3. Modified Condition/Decision Criterion (MC/DC)

4. Multiple Condition/Decision Criterion: 2°=8 test cases

2023 EJCP 43



Modified Condition/Decision Criterion (1)

Objective: Démontrer I'action de chaque condition sur
la valeur de vérité de la décision

if( A && (B || C))

Principe : for each condition, find 2 test cases which
flip Dec when all the other conditions are fixed

EX: For A A=0,
1

2023 EJCP



Modified Condition/Decision Criterion (2)

if( A && (B || C))

for A A=0, B=1,C=1 -- Dec=0
A=1, B=1,C=1 -- Dec=1

for B A=1, B=1,C=0 -- Dec=l
A=1, B=0,C=0 -- Dec=0

for C A=1, B=0,C=1 -- Dec=1
A=1,—B=0,€=0 Pec=0

Here, 5 test cases are sufficient for covering MC/DC !

2023 EJCP
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Exercise:

for A

for B

for C

2023

Can we do better?

1f( A & (B || C))
A= , B= ,C= —— Dec=
A= , B= ,C= —— Dec=
A= , B= ,C= —— Dec=
A= , B= ,C= —— Dec=
A= , B= ,C= —-- Dec=

EJCP
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Modified Condition/Decision Criterion (3)

Property: If n =#conditions then
covering MC/DC requieres at least n+1 TC and max 2n TC

n+1 < #Test cases < 2*n

Coupled Conditions: Flipping the truth value of one condition
Impacts the truth value of another one

When there is no coupled conditions, the minimum (n+1) can
always be reached [Ref ?]

2023 EJCP
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Links with object-code coverage?

Covering MC/DC = covering all the decisions of the object-code
But

Covering MC/DC}{:overing all the decisions of the object-code

Covering all paths of the object-code = covering MC/DC
But

Covering all paths of the object-code%overing MC/DC

2023 EJCP 48



From the Galileo development standard

Decision Coverage
(Source code)

Structural coverage DAL A DAL DAL C DAL DAL
B D E

Statement coverage 100% |100% |100% 90% N/A
(source code)

Statement coverage 100% | N/A N/A N/A N/A
(object code)

Decision coverage 100% |100% | N/A N/A N/A

(source code)

Modified Condition & 100% | N/A N/A N/A N/A

2023

EJCP
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3. Automatic Test Input Generation
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Most Used Techniques

- Exhaustive Testing
- Testing by Sampling

- Random Testing (a.k.a. Fuzzing)
- Symbolic Execution

2023 EJCP
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Exhaustive Testing

/—‘ Dom (P)

- Exhaustive sampling of the program input space
- Selection of all inputs and execution of the program

- Equivalent to a correction proof (when the execution terminates)

2023 EJCP 52



Exhaustive Testing: Limitations and Advantages
- Usually untractable!
P (ush x;, ush X,, ush X3) {...}

//

232 x 232 x 232 values = 2°° distinct test inputs

- Interesting estimation of the size of the input search space, against a
test objective

Test Objective Example: To reach a selected instruction in the code

2023 EJCP 53



Testing by Sampling

/—‘ Dom (P)

X, X, X, X,

Weak version of exhaustive testing

Examples :
{0, 1, 2, 2%2-1} pour un ush

{NaN, -INF,-3.40282347e+38, -1.17549435e-38, -1.0, -0.0,.. }
for a 32-bit floating-point number (IEEE 754)

2023 EJCP 54



Random Testing

Uniform probability distribution on the program input space

(l.e., each test input is equi-probable)

- Using pseudo-random generators

- Require an automated oracle (e.g., Metamorphic Testing)

- Stopping criteria must be fixed (number of test inputs, covering a
structural criterion, time-out, etc.)

2023
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Selection Criterion C

- Process of test inputs selection
- Sometimes, it induces a « partition » over the program input space

(e.qg., All_paths of P)

P(int 1,1nt 7Jj)
{
1f( C, )
else

1f( C,)
else

Dom (P)

J

2023

EJCP
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Deterministic Coverage of Criterion C

Selection of at least one element per subdomain of the partition

‘ Dom (P)

Based on the uniformity assomption that a single input is sufficient to
test the whole subdomain

2023 EJCP 57



Probabilistic Coverage of Criterion C

Random selection of test inputs according to a distribiution profile

« /  Dom (P)
_|_
X4 | +
| X,
+ +
Xs X4 n Xe
X +
° X3 >

2023 EJCP 58



Is Random Testing Efficient to Cover a Criterion?

p{xe€A}: probability that a random test input X covers an element A

Dom (P)

SC — {Al"

v

Here p{xeA;} < p{xeh,} < p{xelA;} < p{xeh,}
Hence, random testing covers better A, than A,

RT is well adapted to test the program robustness, but hill-conditioned to test

corner-cases
2023 EJCP
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Symbolic execution

Symbolic state: <Path, State, Path Conditions>

Path = Nj-..-N, IS a path expression of the CFG
State = <V, 0> ovarpy Where @ is an algebraic expression over X
Path Cond. = c,,..,C, where c;is a condition over X

X denotes symbolic variables associated to the program inputs and Var(P) denotes
internal variables

2023 EJCP 60



Symbolic execution

Ex: a-b-(c-b)?>-d-f with XY P(short x.y)

short w= abs(y)

<q, <z,1>, <w,abs(Y)>, true > double z= 1.0
<a-b, <z,1>, <w,abs(Y), abs(Y)!=0>
<a-b-c, <z,X>, <w,abs(Y)-1>, abs(Y)!=0>
<a-b-c-b, <z,X.>, <w,abs(Y)-1>,
abs(Y) 1= 0, abs(Y)-11=0»
< a-b-c-b-c, <z,X?, <w,abs(Y)-2>,

abs(Y) 1= 0, abs(Y)-11=0»

<a-b-(c-b)?, <z X2, <w,abs(Y)-2>,
abs(Y) 1= 0, abs(Y) I= 1, abs(¥)-2 = 0 >

<a-b-(c-b)?-d, <«z,X?>, <w,abs(Y)-2>,
abs(Y)!=0,abs(Y)!=1,abs(Y)=2,Y>0 >

return(z)
<a-b-(c-b)2-d-f, <z,X2>, <«w,0>, y=2 >



Computing Symbolic States

» <Path, State, PC> is computed by induction over each statement of Path

» When the Path conditions are unsatisfiable then Path is non-feasible and
reciprocally (i.e., symbolic execution captures the concrete semantics)

ex: <M}, abs(Y)=0 A Y<O0 >

» Forward vs backward analysis:

Forward -> interesting when states are needed
Backward - saves memory space, as complete states are not computed

2023 EJCP 62



Backward analysis

Ex_: a-b-(c-b)?-d-f with X,Y
f,d: Y >0

b:Y>0,w=0

c:Y20,w-1=0
b:Y>0,w-1=0,w!=0
c:Y20,w-2=0,w-11=0

b: Y>0,w-2=0,w-11=0w!=0

a: Y 20, abs(Y)-2 =0,
abs(Y)-1!=0, abs(Y) !=0

Y =2 EJCP

P(short x.,y)
short w= abs(y)
double z= 1.0
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Constraint Solving in Symbolic Evaluation

Mixed Integer Linear Programming approaches
(i.e., simplex + Fourier’s elimination + branch-and-bound)

CLP?R,Q) in ATGen ~ (Meudec 2001}
Ipsolve iIn DART/CUTE (Godefroid/Sen et al. 2005

SMT-solving (= SAT + Theories)

STP in EXE and KLEE _ Cadar et al. 2006;
Z3 in PEX and SAGE (Tillmann and de Halleux 2008

Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler (Williams et al. 2005)
EUCLIDE (Gotlieb 2009)
ECLAIR (Bagnara Bagnara Gori 2013)
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Problems for Symbolic Evaluation Techniques

—> Combinatorial explosion of paths
- Symbolic execution constrains the shape of dynamically allocated objects

int P(struct cell * t) { / t

if(t==t->next){... *

next

constrains t to:

- Floating-point computations =

F Charreteur, B Botella, A Gotlieb. Modelling dynamic memory management in constraint-
based testing. Journal of Systems and Software. Elsevier, 2009
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float foo( float x) {
float v = 1.0el2, z ;
if( x < 10000.0 )

z = X + vy

if( z > vy)

A W N

Is the path 1-2-3-4 feasible ?

x < 10000.0

Path conditions: / On the reals : x < (0,10000)

x +10e12 > 1.0el2 On the floats : no solution !
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Conversely, float foo( float x) {
float v = 1.0el2, z ;
1. 1£f( x > 0.0 )
2. z = X + y;
3. if( z == vy)
4.
Is the path 1-2-3-4 feasible ?
Path conditions: On the reals : no solution
x>0.0
x +1.0el12 = 1.0el2 On the floats: x € (0, 32767.99..)

Solution: build a dedicated constraint solver over the floats !

B Botella, A Gotlieb, C Michel. Symbolic execution of floating-point computations. STVR 2006
R Bagnara, M Carlier, R Gori, A Gotlieb. Symbolic path-oriented test data generation for floating-point programs.
IEEE ICST 2013
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Dynamic Symbolic Evaluation (DSE)

» Symbolic execution of a concrete execution (also called concolic execution)
» By using input values, feasible paths only are (automatically) selected

» Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005),
PEX (Tillman et al. Microsoft 2008),

SAGE (Godefroid et al.2008)
KLEE (Cadar et al. 2008)
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Dynamic Symbolic Execution for All-k-paths

1. Draw an input at random, execute it and record path conditions

@ 2. Flip a non-covered decision and solve the constraints to find a new input x

@ 3. Execute with x
; e 4. Repeat 2

2023
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Example (1)

16 )
j o* i;

I IA

)

.
14

if( jJ > 8
7 =0

return Jj;

}

2023

EJCP
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Example (2)

I IA

16 )
J o1

)

.
14

if( 3 > 8
i =0

return j;

}

2023

Random imput generation
(1=15448)

- Path 1-3-5

EJCP
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Example (3)

J =2
f(i<16)
J =3 *1
1f( ] 8)
J = 07

return 7J;

}

2023

Try to solve

J1=2
1> 16

Jp>8

Unsatisfiable, therefore @
Path 1-3-4 is non-feasible

EJCP
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Example (4)

] = 2;
f(i<16)
J =3 *1
if( 3 8)
J = 03

return 7J;

}

2023

Bactrack and try to solve

J1=2
| <=16

O
> (i=2) --Path 1-2-3-5 L

EJCP

f

Q
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Example (5)

f( 1int 1 )
{ Bactrack and try to solve
] = 23 -
. Jh =
f( i< 16 )
=9 % 1 1<=16
o = )1
1if( 3 8)
J = 0; .
j,>38

return 7J;

f
) >(i= 10) -- Path 1-2-3-4-5

All-paths covered with three test ~
data (i = 15448,1=2,1=10) @

2023 EJCP
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Dynamic Symbolic Execution: Discussion

Requires to bound the number of iterations in loops
- suitable for automatic test data generation
for the All-k-paths criterion

Performance of the method depends on the first initial random
input

Numerous extensions to handle pointers as input parameters,
logical decisions, function calls, bit-to-bit operations

2023 EJCP 75
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5 1,
DECISION TESTING
TESTING CRITERIA

3

AUTOMATIC
TEST INPUT
GENERATION

Code-Based Testing

EJCP

Oracle Problem
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Non-testable programs
[Weyuker TSE 82]

€ No (complete and correct) oracle available

Because

No formal specifications, incomplete specifications;
Expected results too difficult to compute;
Inferred/generalized from a set of instances;
Depending on the execution environment;

Typical examples:
Third-party library functions, RESTful APIs

Complex mathematical functions (using floating-point computations)
Trained ML models

Optimization programs (optimal planners, assignment, scheduling, etc.)
Reactive and self-adaptive programs

78



Metamorphic Testing [Chen et al. 98]

Metamorphic Relation (MR) of a program P:

User-specified input-output relation about P

Let’s start with a trivial example:
P : a program that implements the gcd of 2 integers
Problem: P(1309, 693) = ?

MR: Wvu, ¥, gadu, v) = gcav, u)

Hence, if P(1309, 693) = P(693, 1309) then verdict = Fail

* Note that many other programs than gcd satisfy P(u, v) = P(v, u) so,
MRs are necessary, but not sufficient to establish program correctness

** Note also that there are many other possible MRs
MR: Vu, Vv, gcdp.u, p.v) = p. gcdu, v) if p is a prime number

MR: Vu, Vv gcdu, v) = gcdv, u-v) ifu>v
79



Graph Theory

How to test a program P that computes a shortest path in an undirected
graph G?

shortestPath(G, a, b) = ?

if P(G, a, b) = a-el-e2-e3-b and P(G, b, a) = b-g1-g2-a then
verdict = Fail

MR: Vva, Vb |shortestPath(G, a, b)| = |shortestPath(G, b, a)|

* Note that MRs can be based on the usage of other functions (possibly under test)
** Note also that MRs can involve more than one additional computation

MR: |shortestPath(G, a,b)| < |shortestPath(G, a, ¢)|+ |shortestPath(G, c, b)|



Search Engines

if search(“tom” OR “jerry”) returns less items than search(“tom” AND "jerry”)
then verdict = Fail

MR; vki, vk2 Isearch(k1 OR k2)| = |search(kl AND k2)|

X: (k1 OR k2), y: (k1 AND k2) implies |search(x)| = |search(y)]




Main Usages

1. To generate follow-up test cases

Test case (Pass) .
Transformation
extracted from MR
Follow-up
test case

P(t(x))
Is checked using the MR

?

82



2. To create partial oracles

Test cases




Strategies for Finding Metamorphic Relations

1) Driven by transformation over input-data

Which transformations t over the inputs x do not change the outcome of
p?

i.e., find t such that P(x) = P(t(x))

Transformations t: add, remove or reorder elements, perturb inputs, shift
or rotate images, ...

2) Driven by output-relation
Given two executions of P, what kind of relations do exist between these

executions ?
i.e., Given x,y, P(x), P(y), find R (P(x), P(t(x))

Relations R,: less_or_equal, length, subset, equivalent,...

3) Driven by domain-knowledge
Which invariant properties P has to satisfy ?

4)...



Applications of MT (1/3)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2764464, IEEE

Testing online search | | IEEE TSE 2017
engines (Flicki, Youtube, Metamorphic Testing of RESTful Web APIs

Spot/fjé, . ,) Sergio Segura, José A. Parejo, Javier Troya, and Antonio Ruiz-Cortés

Transactions on Software Engineering

Compiler Validation via Equivalence Modulo Inputs

. . Vu Le Mehrdad Afshari Zhendong Su PLDI ? 1 4
Test/ng Comp//EfS Department of Computer Science, University of California, Davis, USA

{vmle, mafshari, su}Q@ucdavis.edu

- = - ()
BNIC Bioinformatics BioMed Cental

Methodology article

An innovative approach for testing bioinformatics programs using
metamorphic testing
Tsong Yueh Chen', Joshua WK Ho*??, Huai Liu' and Xiaoyuan Xie'

Testing bioinfc L
Address: 'Centre for Software Analysis and Testing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, “School of
ro ,‘ams Information Technologies, The University of Sydney, Sydney, NSW 2006, Australia and *NICTA, Australian Technology Park, Eveleigh, NSW
2015, Australia
Genes Re t !/at Net E-mail: Tsong Yueh Chen - tychen@swin.edu.au; Joshua WK Ho* - joshua@it.usyd.edu.au; Huai Liu - hliu@swin.edu.au;
. L Xiaoyuan Xie - xxie@swin.edu.au;
5/' /atl'o ) *Corresponding author

Published: 19 January 2009 Received: 29 May 2008
BMC Bioinformatics 2009, 10:24  doi: 10.1186/1471-2105-10-24 Accepted: |9 January 2009




Applications of MT (2/3)

Testing code obfuscators,
testing web interfaces,
penetration testing

Testing simple ML models

Published in final edited form as:
Computer (Long Beach Calif). 2016 June ; 49(6): 48-55. doi:10.1109/MC.2016.176.

Metamorphic Testing for Cybersecurity

Tsong Yueh Chen,
Department of Computer Science and Software Engineering, Swinburne University of
Technology, Australia

Fei-Ching Kuo,
Department of Computer Science and Software Engineering, Swinburne University of
Technology, Australia

Testing and Validating Machine Learning Classifiers by
Metamorphic Testing™ JSS 2011

Xiaoyuan Xie**¢* Joshua W. K. Ho", Christian Murphy®, Gail Kaiser®,
Baowen Xu®, Tsong Yueh Chen®

= a o 4 L . L - o -1 Iz - - Ix L Tz Ngan 4




Applications of MT

(3/3)

Testing DNNs in self-driving
cars

DeepTest: Automated Testing of
Deep-Neural-Network-driven Autonomous Cars

Yuchi Tian Kexin Pei
University of Virginia Columbia University
yuchi@virginia.edu kpei@cs.columbia.edu
ICSE’18
Suman Jana Baishakhi Ray
Columbia University University of Virginia
suman(@cs.columbia.edu rayb@virginia.edu

Generating driving scenes

DeepRoad: GAN-based Metamorphic Autonomous Driving System Testing

Mengshi Zhang!, Yuqun Zhang?*, Lingming Zhang®, Cong Liu®, Sarfraz Khurshid!
! University of Texas at Austin

ASE bJ 1 8 2 Southern University of Science and Technology
3 University of Texas at Dallas

mengshi.zhang @utexas.edu, zhangyq @sustc.edu.cn, lingming.zhang @utdallas.edu,
cong @utdallas.edu, khurshid@ece.utexas.edu

Testing autonomous drones

2017 IEEE/ACM 2nd International Workshop on Metamorphic Testing (MET)

Metamorphic Model-based Testing of Autonomous Systems

Mikael Lindvall Adam Porter Gudjon Magnusson Christoph Schulze
Fraunhofer CESE Fraunhofer CESE Fraunhofer CESE Fraunhofer CESE
5825 Univ. Research Ct 5825 Univ. Research Ct 5825 Univ. Research Ct 5825 Univ. Research Ct
College Park, Maryland College Park, Maryland College Park, Maryland College Park, Maryland

mikli@fc-md.umd.edu aporter@fc-md.umd.edu GMagnusson(@fc-md.umd.edu cschulze@fe-md.umd.edu




MT: Pros/Cons

+ Automated powerful testing method
+ Multiple MRs can be combined altogether

+ Lightweight method, easy to setup and
deploy (once MRs have been identified)

+ Successful in testing ML models

- Designing MRs often require
domain knowledge

- MRs have different fault-
revealing capabilities

- Shallow underlying theory,
lack of foundations

- Not yet used for systematically
testing critical programs
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Remaining Challenges

Lack of foundational theory
Need for automatic finding and selection of MRs

MT for performance (execution time, energy consumption)
is not yet sufficiently developed

MT of Collaborative Robots
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First Synthesis

In the industrial world, software systems are mostly validated with
software testing (no model checking, no correction proof)

Code-based testing (Testing criteria, MCDC) has a long-term
tradition and it has been popularized with dynamic symbolic
execution (DSE) which combine coverage and SE

Metamorphic Testing is crucial and fruitful technique to deal
with the oracle problem

Numerous tools, methods and approaches exist. That background
cannot be ignored when engaging new research works

Still, open challenges remain...
2023 EJCP 90
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Course Overview

Software Testing Introduction

Code-based Testing
Testing of Autonomous Systems

Open Challenges in Software Testing

EJCP
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Autonomous Software-Systems

« Systems which have a certain degree of self-decision capabilities,
e.g., self-driving cars, industrial robots, smart transportation systems,...

« Systems with increased capabilities of planning (what, how), scheduling (when, who) and
executing complex functions, with limited human intervention, managing unexpected events,
such as faults or hazards

* Not equal to automated systems, which have limited capacity to learn and adapt to
unexpected events

* In robotics and automated driving, the main focus for autonomy is to complement human’s
capacity to take decisions based on vast amounts of uncertain raw data

IEEE Spectrum — Self-driving car Universal Robot — UR3

16 18

Vara Birkeland | &Y




Al in the 5 Pilars of Autonomous Systems

Computer
Vision
Pattern
Recognition

Natural
Language
Processing

Conceptual
Graphs

Conditional
Preference
Networks

Deep Learning
Reinfocement
Learning

Constraint
Programming

Multi-Criteria
Decision

Al for Continuous Testi

Testing Al Systems
[ |

Al for Testing Al

ng

Multi-Agent
Systems

Human-
Machine
Interactions

Al Planning
Optimization

Scheduling




Norwegian Yara Birkeland

This electrical autonomous i

cargo vessel will transport  Norwegian shore
fertiliser from Yara's s

Porsgrunn plant via inland .
waterways to the deep-sea L g
ports of Larvik and Brevik (31 '
nautical miles). Removing up
to 40,000 truck journeys " e Bl i
annually.

Automated Mooring System

-

The system is based on a seven-axis robotic
arm that takes the mooring ropes with loops
and wraps them around bollards on the dock.
The mooring system has redundant
kinematics, with built-in movement
compensation and track planning.

The vessel’s position against the quay will
inform the robotic arm where each bollard is :
located, and the track planning is Source: MacGregor Inc.
automatically generated by the control

system.




Testing Non-testable Autonomous Systems

» Testing perception systems needs to generate tests with (environment)
hazards

» Test coverage over high-dimensional inputs is limited
* Non-linear motion planning involves solving complex constraint models
» Validation of learning systems needs test oracles which can hardly be defined

« Continuous testing is key but needs high control and more diversity



Timeline

\
\

An ldeal Cycle of Continuous Integration and
Its Timing Challenges

commit » Test Case Selection/Generaty/’{
Developer Test Suite Reduction
feedback y

Build

» Test Case Prioritization

— Test Execution Schedulin

+ Test Execution ,
v

—




Deployment of “Intelligent” Continuous Testing

Constraint Programming 1 . TeSt
Suite
Reduction

2. Test

Constraint-based

Execution Scheduling
Scheduling

3. ML for testing

Input | | ] " N Q\ O\
autonomous g, \/ LYY AN
tnpu 2, @ KX/ VKT \RK] N0
=L Systems N

\ o) \NA /
L N o N XN/ -
WAy, ANTA " TANIA 4 X
N\ OSGEOGHO< N\
Actions:
Test Suite] | rewar d Prioritized
K

- XN \Ji\/ \\/
- '// /\( . “ >('. \
Test Cases

. . \ QOutput 1
/.. \ W/ ¥\ - >
Input n f7/ \ . (‘:'I . .'":, . ,/"/O
«f Environment: @ 9 ¥
«=| Cl Cycle

Reinforcement Learning

Artificial Neural Networks



Optimal Test Suite Reduction

F.. Requirements
TC: Test Cases

Optimally Reduced
0" Test Suite

/\ S
(50
» Similar to the Vertex

Cover problem in a <
bipartite graph

NP-hard
problem!



Constraint Programming (CP)

Domain gonsfrairqt
Filtering ropagation
L/' Variable
Labeling

o CPis versatile: user-defined constraints, dedicated solvers,
programming search heuristics but it is not a silver bullet
(developing efficient CP models and heuristics requires expertise)

e Routinely used in Validation & Verification,
CP handles efficiently hundreds of thousands
of constraints and variables

— Global constraints: relations over a non-fixed number
of variables, implementing dedicated filtering algorithms



The nvalue global constraint

[Pachet Roy 1999, Beldiceanu 01]

nvalue(N, V)

Where:

N is a finite-domain variable
V=[Vy .. V] is a vector of variables

nvalue(N, V) holdsiff N=card( {V},;,,: )

nvalue(N, [3, 1, 3]) entails N=2

nvalue(3, [X,, X,]) fails

nvalue(l, [X;, X, X5]) entails X;=X,=X;

Nin 1..2, nvalue(N, [4, 7, X,]) entails X; in {4,7}, N=2



Optimal Test Suite Reduction with nvalue

However,
only F, F,, F5
are available
for labeling!

Sol: F,=2,F,=3,F,=2
Optimally Reduced Test Suite

F,in{1, 2,6}, F,in{3,4}, Fyin {2, 5}
nvalue( MaxNvalue, [F,, F,, F;])
Minimize(MaxNvalue)



The global cardinality constraint (gcc)
[Regin AAAI'96]

gcc(T, d, V)

Where

T=1[Ty ..., Ty] is a vector of N variables
d =[dy, ..., d.] is a vector of k values
V=1V, .., V,] is a vector of k variables

Vi in 1..k,

gec(T, d, V) holds iff V.= card({j | T=di})

Filtering algorithms for gcc are based on max-flow computations



Mixt model using gcc and nvalue

F,in{1, 2,6}, F,in{3,4}, F,in{2, 5}
gCC( [F]_I Fz; F3]1 [1;2;3;4;5;6]1 [Vlr Vz; V3) V4) V5) V6] )
nvalue(MaxNvalue, [F,, F,, F;])
Minimize(MaxNvalue)



Model pre-processing

F,in{1,2,6}>F, =2

as cov(TC,) < cov(TC,) and cov(TC,) < cov(TC,)
withdraw TC, and TC,

F, is covered = withdraw TC,

F,in {3,4} 2 e.g., F, = 3, withdraw TC,

Pre-processing rules can be expressed once
and then applied iteratively

000
@ EEOO6



Comparison with CPLEX, MiniSAT, Greedy (uniform costs)

(Reduced Test Suite percentage in 60 sec)

g_

[ T
= . - ==
5_

=
y = ==
H T
% o i
g _ ==
4 = ==
= =
N T
==
27 ——
1_
TDI TD2 TD3 TD4

Requirements 1000 1000 1000 2000

Test cases 2000 5000 5000 5000

Density 20 7 20 20

A. Gotlieb and D. Marijan - FLOWER: Optimal Test Suite Reduction As a Network Maximum Flow — ACM Int. Symp. on Soft.
Testing and Analysis (ISSTA'14), San José, CA, Jul. 2014.
A. Gotlieb and D. Marijan - Using Global Constraints to Automate Regression Testing - Al Magazine 38, no. Spring (2017).



Other Criteria to Minimize

1 min
Requirement coverage

is always a prerequiste _
5 min
Optimally Reduced
Test Suite

3 min

3 min
1 min

1 min

Execution time!

A Gotlieb, M Carlsson, D Marijan, A Petillon. A New Approach to Feature-based Test Suite Reduction in
Software Product Line Testing. ICSOFT-EA 2016. Best paper award. Scitepress.org



Deployment of “Intelligent” Continuous Testing

Constraint Programming 1 . TeSt
Suite
Reduction

2. Test

Constraint-based

Execution Scheduling
Scheduling

3. ML for testing

Input | | ] " N Q\ O\
autonomous g, \/ LYY AN
tnpu 2, @ KX/ VKT \RK] N0
=L Systems N

\ o) \NA /
L N o N XN/ -
WAy, ANTA " TANIA 4 X
N\ OSGEOGHO< N\
Actions:
Test Suite] | rewar d Prioritized
K

- XN \Ji\/ \\/
- '// /\( . “ >('. \
Test Cases

. . \ QOutput 1
/.. \ W/ ¥\ - >
Input n f7/ \ . (‘:'I . .'":, . ,/"/O
«f Environment: @ 9 ¥
«=| Cl Cycle

Reinforcement Learning

Artificial Neural Networks
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Test Selection and Test Suite Reduction: An Example at
ABB Robotics

PRODUCT BASIC SPECIFICATIONS PRODUCT BASIC SPECIFICATIONS
IRB 14000 Load (kg)  0.50 IRB 1200 Load (kg)  5.00 7.00
YuMi® Reach(m)  0.559 . Reach(m) 0.90 0.70
‘~4I .
Protection  Std:IP30; Clean room ISO 5 1 Protection  Std: P40
. > Option: IP67, Clean room ISO
Mounting Bench, table “§ 4, food grade lubricant
Safety PLbCatB ‘J Mounting  Anyangle
IRB 14050 Load (kg)  0.50 IRB 140 and Load (kg)  6.00
Single Arm YuMi Reach(m)  0.559 IRB 140T Reach(m) 0.81
o Protection  Std:IP30; Clean room I1SO 5 Lo, Protection  Std: IP67
\i_-;ﬁ Option: Cleanroom class 6,
o Mounting Any angle - table, wall, ceiling “;., ) Foundry Plus
- Safety PLdCat3,PLbCatb, “é Mounting  Floor, wall, inverted, and
- SafeMove Pro option tilted angles
IRB 1100 Load (kg) 400 4.00 IRB 1600 Load (kg) 6.00 6.00 10.0 10.0
Reach (m) 0.475 0.58 \ Reach (m) 1.20 1.45 1.20 1.45
;.'/’ Armload (kg) 0.50  0.50 ~ Protection  Std: IP54
¥ : 4 Option: IP67 with foundry
. Protection  Std: P40 R plus 2
o
%,‘1 I Mounting Any angle g‘\ Mounting Floor, wall, inverted, tilted
' . angles, and shelf
IRB 120 and Load (kg) 3.00 IRB 1660I1D Load (kg)  4.00 6.00
IRB 120T Reach(m)  0.58 o > Reach(m) 155 155 10..30 code changes per day
Protection  Std: IP30 ) Protection  Std: IP40 (wrist IP67)
Option: Cleanroom class 5,
certified by IPA : J
Mounting Floor, wall, inverted, and > :,.4{5 Mounting Floor, wall, inverted, and
tilted angles - tilted angles

- Select, schedule and execute about 150 TC per Cl cycle



Constraint-Based Scheduling

Tasks
with distinct
characteristics

Agents
with limited time or
resources capacity

Assignment of Tasks to Agents such that:

1. Task execution is not interrupted or paused
2. Agents are maximally occupied

3. Tasks sharing a global resource are not
executed at the same time

4. Diversity of assignment of tasks to agents is
ensured

Goal:

Schedule as much tasks as possible on available agents
such that the overall execution time is minimized



Test Case Execution Scheduling

(T, M, G,d, g, 1)

T: a set of Test Cases
M: a set of Machines, e.g., robots
G: a set of (non-shareable) resources

d: T = N estimated duration
g: T = 2% usage of global resources
f: T 2 2M possible machines

Function to optimize:

TimeSpan: the overall duration of test execution T,

(in order to minimize the round-trip time)

Disjunctive scheduling, non-
preemptive,

non-shareable resources,
machine-independant
execution time

In practice, global optimality is desired but not mandatory, it’s more important to control Ts w.r.t Te

—> Time-contract global optimization



d f g

m3
Test Druration Excecutable on Use of global resource )
tl 2 ml, m2, mad - =
t2 4 ml, m2, mad rl J@
A simple t3 3 m1, m2,m3 rl -
example td 4 ml, m2, ma rl
47} 3 ml, m2, ma -
L 2 ml, m2, md -
tT 1 mel -
td 2 m2 -
td 3 md -
t10 3 mel, md -

H

Test Cases: t1, t2, t3, t4, t5, t6, t/, 18, 19, t9, t10




The CUMULATIVE global constraint
[Aggoun & Beldiceanu AAAI'93]

CUMULATIVE( t, d, r, m)

WhEE
t=(t, ..., ty) is a vector of tasks, each t;in S; .. E;
d=(, ..., dy) is a vector of task duration

r=(ry, ..., ry) is a vector of resource consumption rates
m is a scalar

N
CumuLative (t, d, r, m) holds iff Z r,=m

i=1
t<t<t+d,




Using the global constraint CUMULATIVE

Test Dreration Executable on U=z of global resournos
CUMULATl_VE((tl,..,tlo), (dy,..,dyp), (1, ..,1), 3), e N
|\/|1,..,|\/|6 N 1..3, t3 3 ml, m2, m3 1
M, =1, Mg =2, My =3, My, in{1,3}, e "
(Es<S,0r E;<S5), M : o
Max(MaxSpan, (E;, ..., Eyp)), ta 3 m3
5 ml, m3

LABEL(MINIMizE(MaxSpan), (Sy,-.,S10), (My,..,My,)) 10

An optimal solution:
$:=0,5,=4,5;,=8,5,=0,5.=4,5,=7,5,=2,5,=9,
Si0=3,

Mi=1L,M,=1,M;=1M,=2,M; =2, My =2, M, =1,
Mg=2,Mg=3,M;;=3

MaxSpan = 11

M Mossige, A Gotlieb, H Spieker, H Meling. Time-aware test case execution scheduling for cyber-physical

systems. Principles and Practice of Constraint Programming, Melbourne, 2017



Limitations of this model

Static model — In practice, robots and test cases are not necessarily
available at each Cl cycle 2 Need a more dynamic model!

Historical data about test case success/failure is not taken into
consideration!

Diversity in scheduling among Cl cycles is not handled



A New Approach Based on Priority and Affinity

- Test results fror; n‘/F . Modeled as a Multi-Cycles Assignment Problem
greevvelrouserrunrs}ériiss 2 Computing priorities based on A, B, C (Priority)
' e ’ Combined with D (Affinity) with several heuristics

. Test duration _
e dfirae B e Incremental solving from Cl cycle to Cl cycle




Affinity: more diversity In the test execution process

O T
’ 3 cycles

= Since last
exec.

10 cycles since last 2 cycles since last
- exec. 5 | exec.

o — 1 cycle
0 cycle f o
_ . since last
since last - s

- L exec.

~—

exec.



Rotational Diversity

Definition 1. Multi-Cycle General Assignment Problem

Maximize E E TijVij

icA* jeTk

subject to Z Tijwi; < by, Vie A"
JETk
Z zi; <1, Vie Tk
i Ak

with
k : Index of the current cycle
AP A set of integers i labeling m agents
T : A set of integers j labeling 7. tasks
b; : Capacity of agent i
v;; : Value of task j when assigned to agent i
w;; - Weight of task 7 on agent ¢
- J1 Task jisassigned to agenti Ai € C;.‘"
KA {O otherwise

(1)

(2)

3)

4)

(5)

Profit (% of FOP)

100

95

90

85

80

. R A
Priority only (FOP)  vij = pij
. AN
Affinity only (FOA)  Vij = Qjj
.. . A | Pij ifvy > max, ¢k AP?
Objective Switch (OS) Vij = ,
a;; otherwise
) . A« B8
Product Combination (PC) Vij = Dij * Q45
Weighted Partial Profits (WPP)
A Nk Pij k Wij
max max pj 4 max max g
i€ Ak jeTk i€ Ak jEeTk
Agents 20 20 20 30
Tasks 750 1500 3000 3000 Total
é + % —l— FOA 15(244) 6157 3(9.5) 3(8.5) 27(14.5
0S§/10 14(22.2) 6(155) 3094 3(84) 26(13.9)
¢ 08/20 9(18.6) 6(15.3) 3(9.2) 3(83) 21(12.9)
@ - 0S8/30 7(16.9) 5(14.3) 3(9.1) 3(8.1) 18(12.D
l 0840  7(162) 4(13.1) 3@|89) 3(7.9) 17(115)
PC 15(24.00 7(144) 3(83) 3(7.5) 28(13.6)
WPP 1424.1) 7(142) 3(7.3) 3(7.0) 27(13.2)
FOP 3(15.7)y 0(10.8) 0(7.1) 04.6) 3(9.6)

FOA PC 0OS/10 0OS/20 OS/30 OS/40 WPP

Strategy (b) Diversity: Full rotations of all tasks (Avg. rotations per task)



SWMOD: Deployment of Time-aware Test Case Execution
Scheduling at ABB Robotics

- ~1500 lines of SICStus Prolog Code with CP(FD) Visualstudio @ python SlGSt4u's
- Fully integrated into the MS-TFS Continuous Integration feam Foundation erver

- Using the global constraint binpacking + rotational diversity

- Deployed at ABB since Feb. 2019

CP with global constraints (cumulative, binpacking) and rotational diversity
can solve the test execution scheduling problem

Constraint-based Scheduling

“ ll ll “SWMOD deployed at ABB Robotics and used every day to schedule tests
" .. l. throughout several ABB centers in the world (Norway, Sweden, India, China)”

H. Spieker, A. Gotlieb and M. Mossige - Rotational Diversity in Multi-Cycle Assignment Problems - In Proc. of the Thirty-Third AAA|
Conference on Artificial Intelligence (AAAI-19). Feb. 20189.



Deployment of “Intelligent” Continuous Testing

Constraint Programming 1 . TeSt
Suite
Reduction

2. Test

Constraint-based

Execution Scheduling
Scheduling

3. ML for testing
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Test Prioritization: Learning from previous test runs

Motivation:
Adapting priorities to the most interesting test cases based on past test verdicts (from previous Cl cycles)

* Considering test case meta-data only (test verdicts, execution time, ...)
* Limited memory of past executions / test verdicts

* Using Reinforcement Learning for priorising test cases Implemented with tWO

distinct memory models
(tableau, ANN) and three

> [ Agent

States: = reward functions
Test Suite reward
T &
I FJ'+.’ [ E 1 - i
P nvironment:
: r."'l_l_lr "_

Cl Cycle




3 Industrial data sets (1 year of Cl cycles)

Rewa rd FU nCtionS d nd NAPFD: Normalized Average Percentage of Faults Detected
Experimental Evaluation

ABB Paint Control ABB IOF/ROL GSDTSR
(a) Failure Count Reward

1.0

— — Tableau

m— Network
o
Reward Function 1. Failure Count Reward %
Z
reward/**(t) = | TSI (Vt e Ti)
o
Reward Function 2. Test Case Faitlure Reward &
S
_ 1 — t.verdict; ifteTS;
reward:cfm(t} = .
0 otherwise
Reward Function 3. Time-ranked Reward A
=
=
Z

reward{"™(t) = |TSI*| — t.verdict; x Z 1

tpE 'TS{““A
rank(t)<rank(ty)

H. Spieker, A. Gotlieb, D. Marijan and M. Mossige Reinforcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’17). New York, NY, USA: ACM, 2017.



Adaptive Metamorphic Testing

Motivation: Learning which Metamorphic Relation works best to test
vision-based systems

Input layer ; Hidden layers Output layer

4) iRobot Rumba

Artificial Neural Networks

7) Riba Medical Robot 8) TALON [ 9) Zoomer Robot Dog

TensorFlow.org - Image classification — dataset of 10,000 images Object Detection case study — MS COCO dataset of 5,000
images

Airplane  Automobile  Bird  Cat  Deer Dog  Frog Horse Ship Truck  Avg.

Blur 10.60 11.40 13.10 9.81 7.30 13.50 17.70 9.00 6.00 6.20 10.46
Flip L/R 2.90 1.00 110 6.71 2.20 6.80 1.30 2.40 0.90 2.40 3.07
Flip U/D 14.90 74.60  37.80 33.13  59.10 53.90 29.30 9240 7220 43.30  51.06

B Tetraband Grayscale 1.70 5.40  28.10 791 1810 26.00 14.30 6.70 1.80 5.30 1213

Using Contextual Bandits
(Reinforcement Learning) to

20

10 B Baseline Invert 16.50 2040 2950 33.13 4140 7030 41.80 3830 27.30 3570 36.33
Iea rn h ow to se I ect 0 Rotation 25,49 37.00 3543 17.70  69.00 4610 20.63 60.44 4244  50.01 40.43
Shear 11.22 09 2669 3579 4545 51.97 1563 4024 1978 55.24  30.70
I 4 4 4 4
&
. . \s{- 42:-\\} \_}\\e" 519 xqg’b NI _&zf'\' 0@ Avg. 12.33 23.41  24.96 2060 34.65 3837 20.10 3564 2477 2831 26.31
. &S
metamorphic relations S8 S & &Y
< (&) & & Q_o & ¥ Table 1: CIFAR-10 dataset: Effects of MRs by the true class of the image. Each cell value shows the percentage of images

rongly classified after applying the MR. Every class contains 1000 images. Rotation and Shear are

- Adaptive Metamorphic Testing @ m cusicaion

H. Spieker, A. Gotlieb — Adaptive Metamorphic Testing with Contextual Bandits — Journal of Systems and Software. 165: 110 (2020)
A. Gotlieb, D. Marijan and H. Spieker: Testing Industrial Robotic Systems: A New Battlefield!

In Software Engineering for Robotics, 465p. Edited by A. Cavalcanti, B. Dongol, R. Hierons, J. Timmis, J. Woodcock ed. Springer Nature,
2021.



Take Away Message

Testing autonomous systems brings new interesting challenges for
software V&V research

Some Al techniques such as Constraint Programming (CP) and
global constraints are already very successful in test case generation,
test suite reduction and test execution scheduling

Testing autonomous systems such as
collaborative robots or self-driving cars AP T
is challenging as: Blaets pseS Af g

- Expected behaviours cannot be
specified in advance

- Interactions with humans involve
more safety issues

dlarifies of the outhor

authorisotion

(C) Copyright 2017 CERTUS Centre No copy or of reproduction

Us Cenfre on Software Validation and Verification

without
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Course Overview

Software Testing Introduction

Code-based Testing
Testing of Autonomous Systems

Open Challenges in Software Testing

EJCP

124



Testing Neuro-Symbolic Al models

Neuro-symbolic Al models combine NN (CNN, RNN, LSTM
Transformers, etc.) with symbolic reasoning to improve

1. The perf. of classification/regression models in ML

2. The explicability of NN models

Besides the oracle problem, testing these models is challenging
as it it requires to quantify the benefice of each part (NN vs
Symbolic)

Testing the guality/interest of explanations is an open research
guestion — An overall field has been created, the field of XAl



Testing Al model Trustworthiness (1)

Need to adopt a definition

A.

g —
High Level Expert " Respect for ‘\-.
S L Human

“\n_...\ Autonemy ,,-"j

—1
[ ]

Prevention of
harm

Trustworthy Al

of Trustworthy Al (e.g., EU HLEG Al)

Human agency and
aversight

Diversity, non-
diserimination and
fairness

Societal and
environmental well-being

Accountability

Transparency

Privacy and data
FoVErnance

Technical robustness and
safaty

Technical
Methods

Technical
Methods

Architecture for Trustworthy Al
Ethics and rule of law by design
Explanation methods

Testing and validating

Data Quality Management

Cwality of Service indicators
Regulation - Code of conduct
Standardization - Certification

¥ Via governance
framewaorks

Education and awareness to foster

an ethical mind-set

Stakeholder participation and
sacial dialogue

Diversity and inclusive design
teams

“On 14 June 2023, MEPs adopted Parliament’s negotiating position on the Al Act. The talks will now begin with EU countries in

the Council on the final form of the low.” neep=:/¢

FWWW . BUrOpATL  EUropa . =




Testing Al model Trustworthiness: A Research Programme

5

Transparency P N

Privacy and
data
governance

Conformance Testing

Acountability

Human agency
and

oversight

<O

(%)
DY A
non-discrimination

Diversity,

and
Fairness

Technical
robustness
and safety

Societal and
environmental
well-being




s|mu|a Thrd Yo for Vosur Aftenion
VIAS Dept.

Validation Intelligence for Autonomous Software-Systems

Arnaud GOTLIEB

VIAS explores how to test the robustness, reliability, and transparency of software-systems (industrial robots, self-
driving cars, navigation systems, etc.) with intelligent methods

1. Trustworthy Artificial Intelligence for Autonomous Systems

2. Testing Intelligent Transport Systems
3. Learning and Reasoning for Data-Intensive Systems

April 2023 (11 employees): 3 permanent researchers, 5 postdocs, 3 PhDs, 3 external PhDs + 2 ongoing recruitments

Funded by EC: AI4CCAM (HEU, Coordination, 2023-25), TRANSACT (ECSEL, 21-24), MARS (HEU, 23-26), CERTIFAI (HEU, 23-26)
Funded by RCN: T-Largo (2019-22), T3AS (19-22), SMARTMED (19-22), TSAR (19-23), AutoCSP (21-24)

RESIST_EA: 15t Inria-Simula Associate Team on Resilience of Software Systems (2021-2024)

simula h,u’a’_ CX) I)?el\l E(re\fvi\?/rCh Council
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