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Course Overview

Software Testing Introduction

Code-based Testing

Testing of Autonomous Systems

Open Challenges in Software Testing 
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A Historical Perspective on Software Testing

1945 1960 1980 1990 2000 2010 2020
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9/9/1947

Grace Hooper
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1960-80: Testing = Debugging

What have we learnt since then?

Causality:    Error→ Fault→ Failure

In fact, 3 distinct activities:

* Failure detection (Testing purpose)

* Fault localization (Debugging purpose)

* Error correction           (Debugging purpose)
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1980-90: Testing = Destruction

“Testing is the process of executing a program with the intent of 

finding errors” [G. Myers  The Art of Software Testing 1979]

Consequently: 

validation team ≠ development team 

But, there is no specification to test the program against

That dogmatic position was progressively given up!
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1990-2000: Testing = Fault Prevention

“To convince that a program conforms to its specifications by 

using static or dynamic analysis techniques”

- Program analysis → Control: Property checking 

       Before execution

- Program execution → Testing: Result evaluation 

       After execution
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Visual 1998
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Visual 2017
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Software testing in the V software 

developpement process: 

Requirements

Architecture & system

Usage & 

acceptance testing

Functional specifications

System testing
(performence, load, robustness, security testing)

Coding design

Unit & Integration testing
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2000-2010 : Testing = Model-Based Testing (MBT)

User Requirements

Test Model 

(formal, graphical)

StateCharts, B, UML,…

Program under

test

Modelisation

Validation

Executable

test scripts

Automatic Test Case 

Generation

Specification and 

development

MBT added-value: Build a (test) model instead of test cases to validate/verify the program

DEV TEST

manual

autom.
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2010-2020: Testing = Agile Testing/Test-Driven Dev. (TDD)

User Requirements

Unit/Integration

Tests

Program under

test

Coding

Validation

Executable

test scripts

Specification and 

development

Writing tests instead of a specification model is 

considered more agile

DEV TEST

manual

Autom.
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2020-20..: Testing = Intelligent Testing / AI-driven Testing

Usage traces

Unit Tests

Program under

test

AI-based test generation and 

Maintenance based on:

1. Historical data

2. Simulated data

3. Synthetized data

Validation

Executable

test scripts

Specification and 

development

AI is revolutionizing the way software systems are developed and tested

DEV TEST

Autom.

Autom.
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Terminology
(IEEE Standard Glossary of SE, BCS’s standard for Softw. Testing)

Validation: “The process of evaluating software at the end 

of software development to ensure compliance with intented 

usage” -- Are we developing the right product ?

Verification: “The process of determining whether the 

products of a given phase of the software development 

process fulfill the requirements established during the 

previous phase” -- Are we developing the product right ?

Testing: “Evaluating software by observing its execution”
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Program Testing:  Our Definition

- Testing = Execute a program P to detect faults, 

which are non-conformities w.r.t. the program 
specification F

- Looking for counter-examples:

?X tq P(X)  F(X)
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Program Correction: Fundamental Limitation

Impossibility to demonstrate the correction of a program in the general 

case as a consequence of the undecidability of the Halting problem 

of a Turing machine

“Program Testing can be used to prove the presence of bugs, but never 

their absence”   [Dijkstra 74]

PS : Expert developer →    ~1 fault / 10 LOC

    ~163 faults / 1000 instructions

   [B. Beizer   Software Testing Techniques  1990]
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Test Process

Program P

Execute

Inputs OutputsOracle

Verify

Verdict: pass☑ or fail☒
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Oracle Problem :

How to verify the computed outcomes?

In Theory:

- By predicting the expected result

- By using a formulae extracted from the specification

- By using another program

- By using known properties about multiple executions of the program

In Practice :

- Approximative predictions (due to floating-point computations,…)

- Unknown formula (because Program = Formulae)

- Non bug-free oracles and incorrect properties
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Test Input Selection Problem

How to choose inputs for testing?

Test Inputs Outcomes

A. Black-box Testing: Using sepcifications to generate test inputs

B. Code-Based Testing: Using the program code and structure 
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A. Black-box Testing

Using a specification model:

- Informal (Partition Testing, Boundary Testing, ...) 

- Half-formal (Use cases, Sequence diagrams, UML/OCL, 

Causes/effects graphs…)

- Formal (Algebraic specifications, B Machines, Transition 

systems, IOLTS, …)
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B. Code-Based Testing

Using a model computed from the source code of the program under

test

- model = Internal representation of the program structure

- Heavy usage of Graph Theory, in particular, coverage techniques
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Specification:

Return the product of

i by j

(i = 0, j = 0) --> 0

(i = 10, j = 100) -->1000

…

--> OK

prod(int i,int j )

{

int k ;

if( i==2 )

k := i << 1 ;

else

(…)

return k ;

}

Code-Based Testing is indispensable (1)
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Undetected fault if only

black-box  testing is

used par

patch→ k := j << 1

prod(int i,int j )

{

int k ;

if( i==2 )

k := i << 1 ;

else

(…) 

return k ;

}

Code-Based Testing is indispensable! (2)

Specifications :

renvoie le produit de 

i par j

(i = 0, j = 0) --> 0

(i = 10, j = 100) -->1000

…



2nd release

Test Set 2

3rd release

Test Set 3
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Regression Testing

Regression

Tests

New

Tests

1st release

Test Set 1

Program 

Under Test
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Bibliography: Reference Books
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Bibliography: Journals
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Course Overview

Software Testing Introduction

Code-based Testing

Testing of Autonomous Systems

Open Challenges in Software Testing 
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Code-Based Testing

3. 
AUTOMATIC 
TEST INPUT 
GENERATION

2. 
DECISION 
TESTING

1. 
TESTING 
CRITERIA

Oracle Problem

4. Metamorphic 

Testing
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1. TESTING CRITERIA
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Internal Representations

Program Structure Abstractions

- Control Flow Graph (CFG)

  

- Def/Use Graph

 -  Program Dependence Graph
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Control Flow Graph (CFG)

Oriented and connex graph (N,A,e,s) where

N: set of nodes = 

   Instructions block sequentially executed

E: set of arcs, N x N relation, 

 Some arcs are labelled with {T, F} = Possible branching of the 

control flow

e: Program input node

s: Program output node 
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double P(short x, short y) {

short w = abs(y) ;
double z  = 1.0 ;

while ( w != 0 )
{

z  = z * x ;
w = w - 1 ; 

}

if ( y<0 ) 

z = 1.0 / z ;
return(z) ; 
}

w != 0

y<0

a

b

c

d

e

f

Control Flow Graph (CFG): Example

F

T

F

T
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Structural Criterion:  All_nodes | All_statements

Motivation: To cover all program instructions 

at least once during testing

Def: A subset C of program paths of the CFG

(N,A,e,s) satisfies All_nodes

iff n  N, Ci  C

such that n is a node of Ci

Example: Here, only one path is necessary
       a-b-c-b-d-e-f [6/6 nodes]

a

b

c

d

e

f
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Motivation: To cover all program decisions at 

least once during testing

Def: A subset C of paths of the CFG 

(N,A,e,s) satisfies  All_arcs

iff a  A, Ci  C

such that a is an arc of Ci

Example: Here, 2 paths are necessary

       a-b-c-b-d-e-f [6/7 arcs]

       a-b-d-f [3/7 arcs]

a

b

c

d

e

f

Structural Criterion: All_arcs | All_decisions



2023 EJCP 35

Structural Criterion: All_simple_paths | All_k_paths

a

b

c

d

e

f

Motivation: To cover all execution paths which do not 

iterate more than once in loops or do not exceed a 

given length

Example: Here, 4 simple paths are necessary

to cover All_simple_paths

       a-b-d-f

a-b-d-e-f

a-b-c-b-d-f

a-b-c-b-d-e-f

Example: 2 paths are necessary to cover All_5_paths 

(Paths with less than 5 instruction blocs)

a-b-d-f

a-b-d-e-f
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Def: A set C of paths of the CFG (N,A,e,s) 

satisfies all_paths if C contains all paths from 

e to s

Here, it is impossible as there is an  of 

paths. Note also that some paths may be 

infeasible!

All_paths is stronger than All_k_paths

All_k_paths is stronger than All_arcs

All_arcs is stronger than All_nodes

…

a

b

c

d

e

f

Structural Criterion: All_paths



2023 EJCP 37

Executed Path: exec(P,X)

Principle:

X executes a single path of the CFG (no 

concurrency, no dynamic bindings)

Def: Sequence of CFG nodes, not necessarily

finite, followed by the execution flow when
P is feeded with X as input

Examples:

exec(P,(0,0)) = a-b-d-f

exec(P,(3,2)) = a-b-(c-b)²-d-f

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)
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Infeasible Path Problem

Let c be a CFG path of P,

Does X exist such that c=exec(P,X) ?

Here, a-b-d-e-f is infeasible!

Weyuker 79

Determining if a node, an arc, or a path of 

the CFG is feasible is undecideable in the 

general case

Sketch of proof: Reduction to the Halting

problem of a Turing Machine

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)
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Exercise: 

Find the infeasible paths of the program

P(short x)
x > 0

y=x
x=0

x < 0   &&  y>= 0 

a

b

d

f

g

c y= -x
x= -1

v f

v f

e
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Measuring code coverage

3 distinct techniques
- Instrumenting source code

+ Easy to implement
+ Powerful as everything regarding executions can be 

recorded
- Add untrusted code in trusted source code 

- Instrumenting binary code
+ Do not modify source code
- Difficult to implement

- Use a debugger
+ Do not modify source code
- Specific to each compiler 
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2. DECISION TESTING
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Condition / Decision in a Program  

if( A && (B || C))

Condition (bool., Arith. expr., ...)

Decision
(Logical predicate in a control structure of the program)

Notation:    Dec is the truth value of the decision
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3. Modified Condition/Decision Criterion (MC/DC)

if( A && (B || C))

1. Decision Criterion (DC) :    A=1,B=1,C=0 – Dec=1                                           

A=0,B=0,C=0 – Dec=0

4. Multiple Condition/Decision Criterion: 23=8 test cases

Some Testing Criteria associated to Decisions

2. Condition Criterion (CC) :   A=1,B=1,C=0 – Dec=1

A=0,B=0,C=1 – Dec=0
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Modified Condition/Decision Criterion  (1)

Objective: Démontrer l’action de chaque condition sur 

la valeur de vérité de la décision

if( A && (B || C))

Ex: For A A=0, B=1,C=1  -- Dec=0

A=1, B=1,C=1  -- Dec=1

Principe : for each condition, find 2 test cases which

flip Dec when all the other conditions are fixed
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Modified Condition/Decision Criterion  (2)

if( A && (B || C))

for A A=0, B=1,C=1  -- Dec=0

A=1, B=1,C=1  -- Dec=1

for B A=1, B=1,C=0  -- Dec=1

A=1, B=0,C=0  -- Dec=0

for C A=1, B=0,C=1  -- Dec=1

A=1, B=0,C=0  -- Dec=0

Here, 5 test cases are sufficient for covering MC/DC !
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Exercise: Can we do better?

if( A && (B || C))

for A A= , B= ,C=   -- Dec=

A= , B= ,C=   -- Dec=

for B A= , B= ,C=   -- Dec=

A= , B= ,C=   -- Dec=

for C A= , B= ,C=  -- Dec=

A= , B= ,C=  -- Dec=
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Modified Condition/Decision Criterion  (3)

Property: If n = #conditions then

covering MC/DC requieres at least n+1 TC and max 2n TC 

n+1  #Test cases  2*n

Coupled Conditions: Flipping the truth value of one condition 

impacts the truth value of another one

When there is no coupled conditions, the minimum (n+1) can

always be reached [Ref ?]
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Links with object-code coverage?

Covering MC/DC   covering all the decisions of the object-code

But

Covering MC/DC   covering all the decisions of the object-code

Covering all paths of the object-code   covering MC/DC

But

Covering all paths of the object-code   covering MC/DC
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From the Galileo development standard

Structural coverage DAL A DAL 

B
DAL C DAL 

D

DAL 

E

Statement coverage 
(source code)

100% 100% 100% 90% N/A

Statement coverage 
(object code)

100% N/A N/A N/A N/A

Decision coverage

(source code)
100% 100% N/A N/A N/A

Modified Condition & 
Decision Coverage 
(Source code)

100% N/A N/A N/A N/A
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3. Automatic Test Input Generation
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- Exhaustive Testing

- Testing by Sampling

- Random Testing (a.k.a. Fuzzing)
- Symbolic Execution

Most Used Techniques
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Exhaustive Testing   

- Exhaustive sampling of the program input space

- Selection of all inputs and execution of the program

- Equivalent to a correction proof (when the execution terminates)

Dom(P)
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Exhaustive Testing: Limitations and Advantages

- Usually untractable!

- Interesting estimation of the size of the input search space, against a 

test objective

Test Objective Example: To reach a selected instruction in the code

P (ush  x1,  ush  x2,  ush  x3)      { ... }

232  232  232 values  = 296 distinct test inputs
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Testing by Sampling

Dom(P)

Weak version of exhaustive testing

  Examples : 

     {0, 1, 2, 232-1} pour un ush

     {NaN, -INF,-3.40282347e+38, -1.17549435e-38, -1.0, -0.0,.. }

      for a 32-bit floating-point number (IEEE 754)

X1

X5

X2 X3 X4

X6
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Random Testing

Uniform probability distribution on the program input space

                    (i.e., each test input is equi-probable)

- Using pseudo-random generators

- Require an automated oracle (e.g., Metamorphic Testing)

- Stopping criteria must be fixed (number of test inputs, covering a 

structural criterion, time-out, etc.)



2023 EJCP 56

Selection Criterion C

- Process of test inputs selection

- Sometimes, it induces a « partition » over the program input space

(e.g., All_paths of P)

P(int i,int j) 

{

if( C1 )

else ...

if( C2)

else ...

} i

j

C1C2

C1 C2

C1C2

C1C2

Dom(P)
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Selection of at least one element per subdomain of the partition

X1X4

X3

X2

Deterministic Coverage of Criterion C

Dom(P)

Based on the uniformity assomption that a single input is sufficient to 

test the whole subdomain
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Probabilistic Coverage of Criterion C

Random selection of test inputs according to a distribiution profile

X1

X7

X2

X4X5
X6

X8 X3

Dom(P)



Is Random Testing Efficient to Cover a Criterion?

Dom(P)

A1

A3

A4

A2

p{xA}: probability that a random test input x covers an element A

SC = {A1,..,A4}

Here p{xA1} < p{xA2} < p{xA3} < p{xA4}

Hence, random testing covers better A4 than A1

RT is well adapted to test the program robustness, but hill-conditioned to test 

corner-cases
2023 EJCP 59



Symbolic state:    <Path, State, Path Conditions>

Path          = ni-..-nj                is a path expression of the CFG

State        =  <vi,i> vVar(P) where i is an algebraic expression over X

Path Cond. = c1,..,cn              where ci is a condition over X

X denotes symbolic variables associated to the program inputs and  Var(P) denotes 

internal variables

Symbolic execution
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Symbolic execution

<a,                      <z,1.>, <w,abs(Y)>,                                true >

<a-b,                   <z,1.>,  <w,abs(Y)>,                     abs(Y) != 0 >

<a-b-c,                <z,X>, <w,abs(Y)-1>,                   abs(Y) != 0 >

<a-b-c-b,             <z,X.>,  <w,abs(Y)-1>,  

                                                            abs(Y) != 0, abs(Y)-1 != 0 >

< a-b-c-b-c,         <z,X2>,  <w,abs(Y)-2>, 
                                                            abs(Y) != 0, abs(Y)-1 != 0 >

<a-b-(c-b)2,         <z,X2>,  <w,abs(Y)-2>,
                                          abs(Y) != 0, abs(Y) != 1, abs(Y)–2 = 0 >

<a-b-(c-b)2-d,     <z,X2>,  <w,abs(Y)-2>,
                                   abs(Y) != 0, abs(Y) != 1, abs(Y) = 2, Y  0  >

<a-b-(c-b)2-d-f,      <z,X2>,  <w,0>,                                 Y=2 >

Ex :  a-b-(c-b)2-d-f  with   X,Y

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2



Computing Symbolic States

➢ <Path, State, PC>  is computed by induction over each statement of Path  

➢ When the Path conditions are unsatisfiable then Path is non-feasible and 

reciprocally (i.e., symbolic execution captures the concrete semantics)

ex :   <a-b-d-e-f,{…}, abs(Y)=0  Y<0 >

➢ Forward vs backward analysis:

Forward   → interesting when states are needed 

Backward → saves memory space, as complete states are not computed 
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Backward analysis

Ex :  a-b-(c-b)2-d-f  with X,Y

 f,d: Y 0

 b: Y 0, w = 0 

 c: Y 0, w-1 = 0

 b: Y 0, w-1 = 0, w != 0 

 c: Y 0, w-2 = 0, w-1 != 0 

 b: Y 0, w-2 =0, w-1 != 0,w != 0 

 a: Y 0, abs(Y)-2 = 0, 

    abs(Y)-1 != 0, abs(Y) != 0

  Y = 2 

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2
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Constraint Solving in Symbolic Evaluation

Mixed Integer Linear Programming approaches
(i.e., simplex + Fourier’s elimination + branch-and-bound)

CLP(R,Q) in ATGen (Meudec 2001)
lpsolve in  DART/CUTE (Godefroid/Sen et al. 2005)

SMT-solving (= SAT + Theories)

STP in EXE and KLEE                            (Cadar et al. 2006)   
Z3 in PEX and SAGE          (Tillmann and de Halleux 2008)

Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler (Williams et al. 2005)
Disolver in SAGE (Godefroid et al. 2008)
EUCLIDE (Gotlieb 2009)
ECLAIR (Bagnara Bagnara Gori 2013)

2023 EJCP 64



Problems for Symbolic Evaluation Techniques

→ Combinatorial explosion of paths

→ Symbolic execution constrains the shape of dynamically allocated objects

  int P(struct cell * t) { 

     if( t == t->next ) { … 

                                     

              constrains t to:

→ Floating-point computations 

t

next
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F Charreteur, B Botella, A Gotlieb. Modelling dynamic memory management in constraint-

based testing. Journal of Systems and Software. Elsevier, 2009



float foo( float x) {

float y = 1.0e12, z ;

1. if( x < 10000.0 )

2. z = x + y;

3. if( z > y)

4. …

Is the path 1-2-3-4  feasible ?

Path conditions:

x < 10000.0 

x + 1.0e12 > 1.0e12

On the reals : x  (0,10000)

On the floats :  no solution    !
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float foo( float x) {

float y = 1.0e12, z ;

1. if( x > 0.0 )

2. z = x + y;

3. if( z == y)

4. …

Is the path 1-2-3-4  feasible ?

Path conditions:

x > 0.0 

x + 1.0e12 = 1.0e12

On the reals :  no solution

On the floats:  x  (0, 32767.99…)

Conversely,

Solution: build a dedicated constraint solver over the floats !
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B Botella, A Gotlieb, C Michel. Symbolic execution of floating‐point computations. STVR 2006

R Bagnara, M Carlier, R Gori, A Gotlieb. Symbolic path-oriented test data generation for floating-point programs. 

IEEE ICST 2013



Dynamic Symbolic Evaluation (DSE)

➢ Symbolic execution of a concrete execution  (also called concolic execution)

➢ By using input values, feasible paths only are (automatically) selected

➢ Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005),  

PEX (Tillman et al. Microsoft 2008), 

SAGE (Godefroid et al.2008)

KLEE (Cadar et al. 2008)
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Dynamic Symbolic Execution for All-k-paths

1. Draw an input at random, execute it and record path conditions

b

a

t

c

t

d

t

2. Flip a non-covered decision and solve the constraints to find a new input x

b

a

t

c

t

d

f

3. Execute with x

4. Repeat 2

b

a

t

c

t

f

de

f

t

b

a

t

c

t

f

de

f

f

….
b

a

t

c

t

f

de

fg

h

i

jk

Up to given bounds
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f(  int i  )

{

j = 2;

if( i  16 )

j = j * i;

if( j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (1)
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f(  int i  )

{

j = 2;

if( i  16 )

j = j * i;

if( j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (2)

Random imput generation

( i = 15448)

→ Path 1-3-5
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f(  int i  )

{

j = 2;

if( i  16 )

j = j * i;

if( j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (3)

Try to solve 

j1=2

i > 16

j1 > 8

Unsatisfiable, therefore

Path 1-3-4 is non-feasible
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f(  int i  )

{

j = 2;

if( i  16 )

j = j * i;

if( j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (4)

Bactrack and try to solve 

j1=2

i <= 16

→ ( i = 2 )  -- Path 1-2-3-5



2023 EJCP 74

f(  int i  )

{

j = 2;

if( i  16 )

j = j * i;

if( j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (5)

Bactrack and try to solve

j1 = 2

i <= 16 

j2 = j1*i

j2 > 8

→( i =  10) -- Path 1-2-3-4-5

All-paths covered with three test

data (i = 15448, i = 2, i = 10)
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Dynamic Symbolic Execution: Discussion

Requires to bound the number of iterations in loops
→ suitable for automatic test data generation

for the All-k-paths criterion

Performance of the method depends on the first initial random
input

Numerous extensions to handle pointers as input parameters, 
logical decisions, function calls, bit-to-bit operations
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Code-Based Testing

3. 
AUTOMATIC 
TEST INPUT 
GENERATION

2. 
DECISION 
TESTING

1. 
TESTING 
CRITERIA

Oracle Problem

4. Metamorphic 

Testing
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4. Metamorphic Testing



Non-testable programs    

[Weyuker TSE 82]

 No (complete and correct) oracle available

Because

No formal specifications, incomplete specifications;

Expected results too difficult to compute;

Inferred/generalized from a set of instances;

Depending on the execution environment;

Typical examples:
Third-party library functions, RESTful APIs 
Complex mathematical functions (using floating-point computations)
Trained ML models
Optimization programs (optimal planners, assignment, scheduling, etc.)
Reactive and self-adaptive programs

78



Metamorphic Testing [Chen et al. 98]

Let’s start with a trivial example: 
P : a program that implements the gcd of 2 integers
Problem:  P(1309, 693)   =   ?

MR: u, v, gcd(u, v) = gcd(v, u)

Hence, if  P(1309, 693)  P(693, 1309)         then verdict = Fail

* Note that many other programs than gcd satisfy P(u, v) = P(v, u) so, 
MRs are necessary, but not sufficient to establish program correctness

** Note also that there are many other possible MRs

MR: u, v, gcd(p.u, p.v) = p. gcd(u, v) if p is a prime number

MR: u, v   gcd(u, v) = gcd(v, u-v)  if u > v 
79

Metamorphic Relation (MR) of a program P:
User-specified input-output relation about P



Graph Theory

How to test a program P that computes a shortest path in an undirected
graph G?

shortestPath(G, a, b) = ?

if       P(G, a, b) = a-e1-e2-e3-b  and   P(G, b, a) = b-g1-g2-a    then
verdict = Fail

MR: a, b |shortestPath(G, a, b)| = |shortestPath(G, b, a)|

* Note that MRs can be based on the usage of other functions (possibly under test)

** Note also that MRs can involve more than one additional computation

MR: |shortestPath(G, a,b)| ≤ |shortestPath(G, a, c)|+ |shortestPath(G, c, b)|



Search Engines

if search(“tom” OR ”jerry”) returns less items than search(“tom” AND ”jerry”) 
then verdict = Fail

MR: k1, k2 |search(k1 OR k2)| ≥ |search(k1 AND k2)|

x: (k1 OR k2), y: (k1 AND k2)    implies |search(x)| ≥  |search(y)|  

Ri(x,y) Ro(P(x),P(y))



Main Usages

1. To generate follow-up test cases

82

x P P(x)Test case (Pass)

t(x)Follow-up 
test case

t
Transformation 

extracted from MR 

P P(t(x))

P(t(x))
is checked using the MR

?



2. To create partial oracles

83

x P P(x)
Test cases

y P P(y)

MR Ri(x,y) ?Ro(P(x),P(y))



Strategies for Finding Metamorphic Relations

1)  Driven by transformation over input-data
Which transformations t over the inputs x do not change the outcome of 
P?
i.e.,   find t such that P(x) = P(t(x))

Transformations t: add, remove or reorder elements, perturb inputs, shift 
or rotate images, …

2)  Driven by output-relation
Given two executions of P, what kind of relations do exist between these
executions ?
i.e.,   Given x,y, P(x), P(y), find Ro(P(x), P(t(x)) 

Relations Ro:   less_or_equal, length, subset, equivalent,…   

3)  Driven by domain-knowledge
Which invariant properties P has to satisfy ?

4)…



Applications of MT (1/3)

IEEE TSE 2017

Testing compilers PLDI’14

Testing bioinformatics
programs 
(Genes Regulat. Net. 
simulation)

Testing online search
engines (Flickr, Youtube, 
Spotify,...)



Applications of MT (2/3)

Testing code obfuscators, 
testing web interfaces, 
penetration testing

Testing simple ML models JSS 2011



Applications of MT (3/3)

Testing DNNs in self-driving
cars 

ICSE’18

Testing autonomous drones

Generating driving scenes

ASE’18



MT: Pros/Cons

+ Automated powerful testing method

+ Multiple MRs can be combined altogether

+ Lightweight method, easy to setup and 
deploy (once MRs have been identified)

+ Successful in testing ML models

88

- Designing MRs often require 
domain knowledge

- MRs have different fault-
revealing capabilities

- Shallow underlying theory, 
lack of foundations

- Not yet used for systematically 
testing critical programs



Remaining Challenges

Lack of foundational theory

Need for automatic finding and selection of MRs

MT for performance (execution time, energy consumption) 
is not yet sufficiently developed

MT of Collaborative Robots

89
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First Synthesis

In the industrial world, software systems are mostly validated with
software testing (no model checking, no correction proof) 

Code-based testing (Testing criteria, MCDC) has a long-term
tradition and it has been popularized with dynamic symbolic
execution (DSE) which combine coverage and SE

Metamorphic Testing is crucial and fruitful technique to deal 
with the oracle problem

Numerous tools, methods and approaches exist. That background 
cannot be ignored when engaging new research works

Still, open challenges remain…
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Course Overview

Software Testing Introduction

Code-based Testing

Testing of Autonomous Systems

Open Challenges in Software Testing 



Autonomous Software-Systems

• Systems which have a certain degree of self-decision capabilities, 

e.g., self-driving cars, industrial robots, smart transportation systems,…

• Systems with increased capabilities of planning (what, how), scheduling (when, who) and 

executing complex functions, with limited human intervention, managing unexpected events, 

such as faults or hazards 

• Not equal to automated systems, which have limited capacity to learn and adapt to 

unexpected events

• In robotics and automated driving, the main focus for autonomy is to complement human’s 

capacity to take decisions based on vast amounts of uncertain raw data

Universal Robot – UR3 

Cobot

IEEE Spectrum – Self-driving car Kongsberg Maritime – Yara BirkelandABB Robotics – YUMI 

Cobot



AI in the 5 Pilars of Autonomous Systems

Perception Representation Cognition Interaction Execution

Computer 
Vision

Natural 
Language
Processing

Multi-Agent 
Systems Optimization

Conceptual
Graphs

Deep Learning

Human-
Machine 

Interactions

AI Planning

Scheduling
Pattern 

Recognition

Multi-Criteria
Decision

Conditional
Preference
Networks 

Reinfocement
Learning

Constraint
Programming

AI for Continuous Testing

Testing AI Systems

AI for Testing AI



Norwegian Yara Birkeland
This electrical autonomous 

cargo vessel will transport 

fertiliser from Yara's 

Porsgrunn plant via inland 

waterways to the deep-sea 

ports of Larvik and Brevik (31 

nautical miles). Removing up 

to 40,000 truck journeys 

annually.

The system is based on a seven-axis robotic 

arm that takes the mooring ropes with loops 

and wraps them around bollards on the dock.

The mooring system has redundant 

kinematics, with built-in movement 

compensation and track planning.

The vessel’s position against the quay will 

inform the robotic arm where each bollard is 

located, and the track planning is 

automatically generated by the control 

system.

Automated Mooring System

Norwegian shore

Source: MacGregor Inc.



Testing Non-testable Autonomous Systems

• Testing perception systems needs to generate tests with (environment) 

hazards

• Test coverage over high-dimensional inputs is limited

• Non-linear motion planning involves solving complex constraint models

• Validation of learning systems needs test oracles which can hardly be defined

• Continuous testing is key but needs high control and more diversity



An Ideal Cycle of Continuous Integration and 

its Timing Challenges

Developer 
commit

Build

Deploy

Test

Developer
feedback

Test Case Selection/Generation

Test Suite Reduction

Test Case Prioritization

Test Execution Scheduling

Timeline

+ Test Execution

→ Test preparation time is relative to test execution time! 
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NP-hard 
problem!

Similar to the Vertex 
Cover problem in a 

bipartite graph

Optimal Test Suite Reduction

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimally Reduced
Test Suite

Fi: Requirements
TC: Test Cases



Constraint Programming (CP)

Domain 
Filtering

Variable 
Labeling

Constraint
Propagation• Routinely used in Validation & Verification, 

CP handles efficiently hundreds of thousands 
of constraints and variables

• CP is versatile: user-defined constraints, dedicated solvers, 
programming search heuristics but it is not a silver bullet 
(developing efficient CP models and heuristics requires expertise) 

→ Global constraints:  relations over a non-fixed number
of variables, implementing dedicated filtering algorithms



The nvalue global constraint

[Pachet Roy 1999, Beldiceanu 01]     

nvalue(N, V)
Where:

N is a finite-domain variable 

V = [V1, …,   Vk]  is a vector of variables

N = 𝑐𝑎𝑟𝑑( Vi 𝑖 𝑖𝑛 1. . 𝑘)nvalue(N, V)   holds iff

nvalue(N, [3, 1, 3])   entails N = 2
nvalue(3, [X1, X2])   fails
nvalue(1, [X1, X2, X3])   entails X1 = X2 = X3

N in 1..2, nvalue(N, [4, 7, X3]) entails X3 in {4,7}, N=2



Sol: F1 = 2, F2 = 3, F3 = 2
Optimally Reduced Test Suite

F1 in {1, 2, 6},  F2 in {3, 4},  F3 in {2, 5}
nvalue( MaxNvalue, [F1, F2, F3] )    
Minimize(MaxNvalue)        

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimal Test Suite Reduction with nvalue

However, 
only F1, F2, F3

are available
for labeling!



The global_cardinality constraint (gcc)

[Regin AAAI’96] 

gcc(T, d, V)
Where

T = [T1, …, TN]  is a vector of N variables

d = [d1, …., dk]  is a vector of k values

V = [V1, …, Vk]  is a vector of k variables

∀𝑖 𝑖𝑛 1. . 𝑘,
Vi= card({j | Tj=di})

gcc(T, d, V) holds iff

Filtering algorithms for gcc are based on max-flow computations 



F1 in {1, 2, 6},  F2 in {3, 4},  F3 in {2, 5}
gcc( [F1, F2, F3], [1,2,3,4,5,6], [V1, V2, V3, V4, V5, V6] )  
nvalue(MaxNvalue, [F1, F2, F3])   
Minimize(MaxNvalue)        

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Mixt model using gcc and nvalue



Model pre-processing

F1 in {1, 2, 6} → F1 = 2   
as cov(TC1)  cov(TC2) and cov(TC6)  cov(TC2)                          
withdraw TC1 and TC6

F1

F2

F3

TC1

TC 2

TC 3

TC4

TC5

TC6

F3 is covered → withdraw TC5

F2 in {3,4} → e.g., F2 = 3, withdraw TC4

Pre-processing rules can be expressed once 
and then applied iteratively



Comparison with CPLEX, MiniSAT, Greedy (uniform costs)
(Reduced Test Suite percentage in 60 sec)

A. Gotlieb and D. Marijan - FLOWER: Optimal Test Suite Reduction As a Network Maximum Flow – ACM Int. Symp. on Soft. 
Testing and Analysis (ISSTA'14), San José, CA, Jul. 2014.
A. Gotlieb and D. Marijan - Using Global Constraints to Automate Regression Testing - AI Magazine 38, no. Spring (2017).



Other Criteria to Minimize

F1

F2

F3

TC1

TC4

TC5

TC6

Requirement coverage 
is always a prerequiste

Optimally Reduced
Test Suite

Execution time!

TC2

TC3

1 min

5 min

3 min

3 min

1 min

1 min

A Gotlieb, M Carlsson, D Marijan, A Petillon. A New Approach to Feature-based Test Suite Reduction in 

Software Product Line Testing. ICSOFT-EA 2016. Best paper award. Scitepress.org
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Test Selection and Test Suite Reduction: An Example at 
ABB Robotics

10..30 code changes per day

Test Case Repository:
~10,000 Test Cases (TC)
~25 distinct Test Robots
~500 distinct features

From a concrete set up: 

→ Select, schedule and execute about 150 TC per CI cycle



Constraint-Based Scheduling

Tasks
with distinct
characteristics

Agents
with limited time or 
resources capacity

Assignment of Tasks to Agents such that:

1. Task execution is not interrupted or  paused
2. Agents are maximally occupied
3. Tasks sharing a global resource are not 
executed at the same time
4. Diversity of assignment of tasks to agents is 
ensured

Schedule

Goal:
Schedule as much tasks as possible on available agents 
such that the overall execution time is minimized



Test Case Execution Scheduling

T: a set of Test Cases

M: a set of Machines, e.g., robots

G: a set of (non-shareable) resources

d: T → N    estimated duration

g: T → 2G usage of global resources

f: T → 2M possible machines

Function to optimize:
TimeSpan: the overall duration of test execution TE

(in order to minimize the round-trip time)

(T, M, G, d, g, f)

Disjunctive scheduling, non-
preemptive, 
non-shareable resources, 
machine-independant
execution time 

In practice, global optimality is desired but not mandatory, it’s more important to control TS w.r.t  TE

→ Time-contract global optimization



m3

m2

m1

A simple 
example

d                 f                     g

r1

Test Cases: t1, t2, t3, t4, t5, t6, t7, t8, t9, t9, t10



The CUMULATIVE global constraint

[Aggoun & Beldiceanu AAAI’93]

CUMULATIVE( t, d, r, m)

Where
t = (t1, …, tN) is a vector of tasks, each ti in Si .. Ei

d = (d1, …., dN) is a vector of task duration

r = (r1, …, rN) is a vector of resource consumption rates

m is a scalar



𝑖=1

𝑁

𝑟𝑖 ≤ 𝑚

ti ≤ t ≤ ti + di

CUMULATIVE (t, d, r, m) holds iff



Using the global constraint CUMULATIVE

CUMULATIVE((t1,..,t10), (d1,..,d10), (1, ..,1), 3),

M1,..,M6 in 1..3,  

M7 = 1, M8 = 2, M9 = 3, M10 in {1,3},

(E2 ≤ S3 or E3 ≤ S2), (E2 ≤ S4 or E4 ≤ S2), 

(E3 ≤ S4 or E4 ≤ S3),

MAX(MaxSpan, (E1, …, E10)),

LABEL(MINIMIZE(MaxSpan), (S1,..,S10), (M1,..,M10)) 

An optimal solution:
S1 = 0, S2 = 4, S3 = 8, S4 = 0, S5 = 4, S6 = 7, S7 = 2, S8 = 9, 

S10 = 3,

M1 = 1, M2 = 1, M3 = 1, M4 = 2, M5 = 2, M6 = 2, M7 = 1, 

M8 = 2, M9 = 3, M10 = 3

MaxSpan = 11

M Mossige, A Gotlieb, H Spieker, H Meling. Time-aware test case execution scheduling for cyber-physical 

systems. Principles and Practice of Constraint Programming, Melbourne, 2017



Limitations of this model

• Static model – In practice, robots and test cases are not necessarily 
available at each CI cycle → Need a more dynamic model!

• Historical data about test case success/failure is not taken into 
consideration! 

• Diversity in scheduling among CI cycles is not handled



T2, 
T5, 
T34 T45,

T55

T4, 
T56, 
T67

T7, 
T23

T3, 
T6, 

T45, 
T78

A. Test results from n 
previous runs (Pass/Fail)

B. Developer priority
C. Test duration
D. Time since last execution

- Modeled as a Multi-Cycles Assignment Problem
- Computing priorities based on A, B, C   (Priority)
- Combined with D (Affinity) with several heuristics
- Incremental solving from CI cycle to CI cycle

A New Approach Based on Priority and Affinity



Affinity: more diversity in the test execution process

90

2 cycles since last 
exec.

10 cycles since last 
exec.

3 cycles 
since last 
exec.

1 cycle 
since last 
exec.

0 cycle 
since last 
exec.



Rotational Diversity

Priority only (FOP)

Affinity only (FOA)

Product Combination (PC)

Objective Switch (OS)

Weighted Partial Profits (WPP)



“SWMOD deployed at ABB Robotics and used every day to schedule tests 
throughout several ABB centers in the world (Norway, Sweden, India, China)”

- ~1500 lines of SICStus Prolog Code with CP(FD)
- Fully integrated into the MS-TFS Continuous Integration
- Using the global constraint binpacking + rotational diversity
- Deployed at ABB since Feb. 2019

SWMOD: Deployment of Time-aware Test Case Execution 
Scheduling at ABB Robotics

H. Spieker, A. Gotlieb and M. Mossige - Rotational Diversity in Multi-Cycle Assignment Problems - In Proc. of the Thirty-Third AAAI 
Conference on Artificial Intelligence (AAAI-19). Feb. 2019.

Constraint-based Scheduling

CP with global constraints (cumulative, binpacking) and rotational diversity 
can solve the test execution scheduling problem
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Test Prioritization: Learning from previous test runs

Motivation:
Adapting priorities to the most interesting test cases based on past test verdicts (from previous CI cycles)

• Considering test case meta-data only (test verdicts, execution time, ...)
• Limited memory of past executions / test verdicts

• Using Reinforcement Learning for priorising test cases
Implemented with two

distinct memory models

(tableau, ANN) and three
reward functions



Reward Functions and 
Experimental Evaluation

3 Industrial data sets (1 year of CI cycles)
NAPFD: Normalized Average Percentage of Faults Detected

H. Spieker, A. Gotlieb, D. Marijan and M. Mossige Reinforcement Learning for Automatic Test Case Prioritization and Selection in 
Continuous Integration. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis 
(ISSTA’17). New York, NY, USA: ACM, 2017.



Adaptive Metamorphic Testing

Motivation: Learning which Metamorphic Relation works best to test 
vision-based systems

H. Spieker, A. Gotlieb – Adaptive Metamorphic Testing with Contextual Bandits –  Journal of Systems and  Software. 165: 110 (2020)
A. Gotlieb, D. Marijan and H. Spieker: Testing Industrial Robotic Systems: A New Battlefield!
In Software Engineering for Robotics, 465p. Edited by A. Cavalcanti, B. Dongol, R. Hierons, J. Timmis, J. Woodcock ed. Springer Nature, 
2021.

Object Detection case study – MS COCO dataset of 5,000 
images

TensorFlow.org - Image classification – dataset of 10,000 images

Using Contextual Bandits 
(Reinforcement Learning) to
 learn how to select 
metamorphic relations
→ Adaptive Metamorphic Testing



Testing autonomous systems brings new interesting challenges for 
software V&V research 

Some AI techniques such as Constraint Programming (CP) and 
global constraints are already very successful in test case generation, 
test suite reduction and test execution scheduling

Testing autonomous systems such as 
collaborative robots or self-driving cars
is challenging as:

- Expected behaviours cannot be 
specified in advance
- Interactions with humans involve 
more safety issues 

Take Away Message 
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Open Challenges in Software Testing 



Neuro-symbolic AI models combine NN (CNN, RNN, LSTM 

Transformers, etc.) with symbolic reasoning to improve 

1. The perf. of classification/regression models in ML

2. The explicability of NN models

Besides the oracle problem, testing these models is challenging 

as it it requires to quantify the benefice of each part (NN vs 

Symbolic)

Testing the quality/interest of explanations is an open research 

question – An overall field has been created, the field of XAI

Testing Neuro-Symbolic AI models 



Need to adopt a definition of Trustworthy AI (e.g., EU HLEG AI)

Testing AI model Trustworthiness (1) 



Testing AI model Trustworthiness: A Research Programme 

Testing 

AI models

Diversity, 

non-discrimination 

and 

Fairness

Transparency

Privacy and 

data 

governance

Human agency 

and

oversight

Technical 

robustness

 and safety

Societal and 

environmental 

well-beingAcountability

Conformance Testing 



Validation Intelligence for Autonomous Software-Systems

VIAS Dept.

Arnaud GOTLIEB

VIAS explores how to test the robustness, reliability, and transparency of software-systems (industrial robots, self-
driving cars, navigation systems, etc.) with intelligent methods

1. Trustworthy Artificial Intelligence for Autonomous Systems
2. Testing Intelligent Transport Systems
3. Learning and Reasoning for Data-Intensive Systems

April 2023 (11 employees): 3 permanent researchers, 5 postdocs, 3 PhDs, 3 external PhDs  +  2 ongoing recruitments

Funded by EC: AI4CCAM (HEU, Coordination, 2023-25), TRANSACT (ECSEL, 21-24), MARS (HEU, 23-26), CERTIFAI (HEU, 23-26) 

Funded by RCN: T-Largo (2019-22), T3AS (19-22), SMARTMED (19-22), TSAR (19-23), AutoCSP (21-24) 

RESIST_EA: 1st Inria-Simula Associate Team on Resilience of Software Systems (2021-2024)

Thank You for Your Attention
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