
2023 EJCP 1

From Software Testing to Intelligent Validation of
Autonomous Systems

Du Test Logiciel à la Validation Intelligente des Systèmes Autonomes

Ecole des Jeunes Chercheurs en Programmation

2023

Arnaud Gotlieb

Simula Research Laboratory

Norway

2023 EJCP 2

Course Overview

Software Testing Introduction

Code-based Testing

Testing of Autonomous Systems

Open Challenges in Software Testing

2023 EJCP 3

A Historical Perspective on Software Testing

1945 1960 1980 1990 2000 2010 2020

2023 EJCP 4

9/9/1947

Grace Hooper

2023 EJCP 5

1960-80: Testing = Debugging

What have we learnt since then?

Causality: Error→ Fault→ Failure

In fact, 3 distinct activities:

* Failure detection (Testing purpose)

* Fault localization (Debugging purpose)

* Error correction (Debugging purpose)

2023 EJCP 6

1980-90: Testing = Destruction

“Testing is the process of executing a program with the intent of

finding errors” [G. Myers The Art of Software Testing 1979]

Consequently:

validation team ≠ development team

But, there is no specification to test the program against

That dogmatic position was progressively given up!

2023 EJCP 7

1990-2000: Testing = Fault Prevention

“To convince that a program conforms to its specifications by

using static or dynamic analysis techniques”

- Program analysis → Control: Property checking

 Before execution

- Program execution → Testing: Result evaluation

 After execution

2023 EJCP 8

Visual 1998

2023 EJCP 9

Visual 2017

2023 EJCP 10

Software testing in the V software

developpement process:

Requirements

Architecture & system

Usage &

acceptance testing

Functional specifications

System testing
(performence, load, robustness, security testing)

Coding design

Unit & Integration testing

2023 EJCP 11

2000-2010 : Testing = Model-Based Testing (MBT)

User Requirements

Test Model

(formal, graphical)

StateCharts, B, UML,…

Program under

test

Modelisation

Validation

Executable

test scripts

Automatic Test Case

Generation

Specification and

development

MBT added-value: Build a (test) model instead of test cases to validate/verify the program

DEV TEST

manual

autom.

2023 EJCP 12

2010-2020: Testing = Agile Testing/Test-Driven Dev. (TDD)

User Requirements

Unit/Integration

Tests

Program under

test

Coding

Validation

Executable

test scripts

Specification and

development

Writing tests instead of a specification model is

considered more agile

DEV TEST

manual

Autom.

2023 EJCP 13

2020-20..: Testing = Intelligent Testing / AI-driven Testing

Usage traces

Unit Tests

Program under

test

AI-based test generation and

Maintenance based on:

1. Historical data

2. Simulated data

3. Synthetized data

Validation

Executable

test scripts

Specification and

development

AI is revolutionizing the way software systems are developed and tested

DEV TEST

Autom.

Autom.

2023 EJCP 14

Terminology
(IEEE Standard Glossary of SE, BCS’s standard for Softw. Testing)

Validation: “The process of evaluating software at the end

of software development to ensure compliance with intented

usage” -- Are we developing the right product ?

Verification: “The process of determining whether the

products of a given phase of the software development

process fulfill the requirements established during the

previous phase” -- Are we developing the product right ?

Testing: “Evaluating software by observing its execution”

2023 EJCP 15

Program Testing: Our Definition

- Testing = Execute a program P to detect faults,

which are non-conformities w.r.t. the program
specification F

- Looking for counter-examples:

?X tq P(X)  F(X)

2023 EJCP 16

Program Correction: Fundamental Limitation

Impossibility to demonstrate the correction of a program in the general

case as a consequence of the undecidability of the Halting problem

of a Turing machine

“Program Testing can be used to prove the presence of bugs, but never

their absence” [Dijkstra 74]

PS : Expert developer → ~1 fault / 10 LOC

 ~163 faults / 1000 instructions

 [B. Beizer Software Testing Techniques 1990]

2023 EJCP 17

Test Process

Program P

Execute

Inputs OutputsOracle

Verify

Verdict: pass☑ or fail☒

2023 EJCP 18

Oracle Problem :

How to verify the computed outcomes?

In Theory:

- By predicting the expected result

- By using a formulae extracted from the specification

- By using another program

- By using known properties about multiple executions of the program

In Practice :

- Approximative predictions (due to floating-point computations,…)

- Unknown formula (because Program = Formulae)

- Non bug-free oracles and incorrect properties

2023 EJCP 19

Test Input Selection Problem

How to choose inputs for testing?

Test Inputs Outcomes

A. Black-box Testing: Using sepcifications to generate test inputs

B. Code-Based Testing: Using the program code and structure

2023 EJCP 20

A. Black-box Testing

Using a specification model:

- Informal (Partition Testing, Boundary Testing, ...)

- Half-formal (Use cases, Sequence diagrams, UML/OCL,

Causes/effects graphs…)

- Formal (Algebraic specifications, B Machines, Transition

systems, IOLTS, …)

2023 EJCP 21

B. Code-Based Testing

Using a model computed from the source code of the program under

test

- model = Internal representation of the program structure

- Heavy usage of Graph Theory, in particular, coverage techniques

2023 EJCP 22

Specification:

Return the product of

i by j

(i = 0, j = 0) --> 0

(i = 10, j = 100) -->1000

…

--> OK

prod(int i,int j)

{

int k ;

if(i==2)

k := i << 1 ;

else

(…)

return k ;

}

Code-Based Testing is indispensable (1)

2023 EJCP 23

Undetected fault if only

black-box testing is

used par

patch→ k := j << 1

prod(int i,int j)

{

int k ;

if(i==2)

k := i << 1 ;

else

(…)

return k ;

}

Code-Based Testing is indispensable! (2)

Specifications :

renvoie le produit de

i par j

(i = 0, j = 0) --> 0

(i = 10, j = 100) -->1000

…

2nd release

Test Set 2

3rd release

Test Set 3

2023 EJCP 24

Regression Testing

Regression

Tests

New

Tests

1st release

Test Set 1

Program

Under Test

2023 EJCP 25

Bibliography: Reference Books

2023 EJCP 26

Bibliography: Journals

2023 EJCP 27

Course Overview

Software Testing Introduction

Code-based Testing

Testing of Autonomous Systems

Open Challenges in Software Testing

2023 EJCP 28

Code-Based Testing

3.
AUTOMATIC
TEST INPUT
GENERATION

2.
DECISION
TESTING

1.
TESTING
CRITERIA

Oracle Problem

4. Metamorphic

Testing

2023 EJCP 29

1. TESTING CRITERIA

2023 EJCP 30

Internal Representations

Program Structure Abstractions

- Control Flow Graph (CFG)

- Def/Use Graph

 - Program Dependence Graph

2023 EJCP 31

Control Flow Graph (CFG)

Oriented and connex graph (N,A,e,s) where

N: set of nodes =

 Instructions block sequentially executed

E: set of arcs, N x N relation,

 Some arcs are labelled with {T, F} = Possible branching of the

control flow

e: Program input node

s: Program output node

2023 EJCP 32

double P(short x, short y) {

short w = abs(y) ;
double z = 1.0 ;

while (w != 0)
{

z = z * x ;
w = w - 1 ;

}

if (y<0)

z = 1.0 / z ;
return(z) ;
}

w != 0

y<0

a

b

c

d

e

f

Control Flow Graph (CFG): Example

F

T

F

T

2023 EJCP 33

Structural Criterion: All_nodes | All_statements

Motivation: To cover all program instructions

at least once during testing

Def: A subset C of program paths of the CFG

(N,A,e,s) satisfies All_nodes

iff n  N, Ci  C

such that n is a node of Ci

Example: Here, only one path is necessary
 a-b-c-b-d-e-f [6/6 nodes]

a

b

c

d

e

f

2023 EJCP 34

Motivation: To cover all program decisions at

least once during testing

Def: A subset C of paths of the CFG

(N,A,e,s) satisfies All_arcs

iff a  A, Ci  C

such that a is an arc of Ci

Example: Here, 2 paths are necessary

 a-b-c-b-d-e-f [6/7 arcs]

 a-b-d-f [3/7 arcs]

a

b

c

d

e

f

Structural Criterion: All_arcs | All_decisions

2023 EJCP 35

Structural Criterion: All_simple_paths | All_k_paths

a

b

c

d

e

f

Motivation: To cover all execution paths which do not

iterate more than once in loops or do not exceed a

given length

Example: Here, 4 simple paths are necessary

to cover All_simple_paths

 a-b-d-f

a-b-d-e-f

a-b-c-b-d-f

a-b-c-b-d-e-f

Example: 2 paths are necessary to cover All_5_paths

(Paths with less than 5 instruction blocs)

a-b-d-f

a-b-d-e-f

2023 EJCP 36

Def: A set C of paths of the CFG (N,A,e,s)

satisfies all_paths if C contains all paths from

e to s

Here, it is impossible as there is an  of

paths. Note also that some paths may be

infeasible!

All_paths is stronger than All_k_paths

All_k_paths is stronger than All_arcs

All_arcs is stronger than All_nodes

…

a

b

c

d

e

f

Structural Criterion: All_paths

2023 EJCP 37

Executed Path: exec(P,X)

Principle:

X executes a single path of the CFG (no

concurrency, no dynamic bindings)

Def: Sequence of CFG nodes, not necessarily

finite, followed by the execution flow when
P is feeded with X as input

Examples:

exec(P,(0,0)) = a-b-d-f

exec(P,(3,2)) = a-b-(c-b)²-d-f

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

2023 EJCP 38

Infeasible Path Problem

Let c be a CFG path of P,

Does X exist such that c=exec(P,X) ?

Here, a-b-d-e-f is infeasible!

Weyuker 79

Determining if a node, an arc, or a path of

the CFG is feasible is undecideable in the

general case

Sketch of proof: Reduction to the Halting

problem of a Turing Machine

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

2023 EJCP 39

Exercise:

Find the infeasible paths of the program

P(short x)
x > 0

y=x
x=0

x < 0 && y>= 0

a

b

d

f

g

c y= -x
x= -1

v f

v f

e

2023 EJCP 40

Measuring code coverage

3 distinct techniques
- Instrumenting source code

+ Easy to implement
+ Powerful as everything regarding executions can be

recorded
- Add untrusted code in trusted source code

- Instrumenting binary code
+ Do not modify source code
- Difficult to implement

- Use a debugger
+ Do not modify source code
- Specific to each compiler

2023 EJCP 41

2. DECISION TESTING

2023 EJCP 42

Condition / Decision in a Program

if(A && (B || C))

Condition (bool., Arith. expr., ...)

Decision
(Logical predicate in a control structure of the program)

Notation: Dec is the truth value of the decision

2023 EJCP 43

3. Modified Condition/Decision Criterion (MC/DC)

if(A && (B || C))

1. Decision Criterion (DC) : A=1,B=1,C=0 – Dec=1

A=0,B=0,C=0 – Dec=0

4. Multiple Condition/Decision Criterion: 23=8 test cases

Some Testing Criteria associated to Decisions

2. Condition Criterion (CC) : A=1,B=1,C=0 – Dec=1

A=0,B=0,C=1 – Dec=0

2023 EJCP 44

Modified Condition/Decision Criterion (1)

Objective: Démontrer l’action de chaque condition sur

la valeur de vérité de la décision

if(A && (B || C))

Ex: For A A=0, B=1,C=1 -- Dec=0

A=1, B=1,C=1 -- Dec=1

Principe : for each condition, find 2 test cases which

flip Dec when all the other conditions are fixed

2023 EJCP 45

Modified Condition/Decision Criterion (2)

if(A && (B || C))

for A A=0, B=1,C=1 -- Dec=0

A=1, B=1,C=1 -- Dec=1

for B A=1, B=1,C=0 -- Dec=1

A=1, B=0,C=0 -- Dec=0

for C A=1, B=0,C=1 -- Dec=1

A=1, B=0,C=0 -- Dec=0

Here, 5 test cases are sufficient for covering MC/DC !

2023 EJCP 46

Exercise: Can we do better?

if(A && (B || C))

for A A= , B= ,C= -- Dec=

A= , B= ,C= -- Dec=

for B A= , B= ,C= -- Dec=

A= , B= ,C= -- Dec=

for C A= , B= ,C= -- Dec=

A= , B= ,C= -- Dec=

2023 EJCP 47

Modified Condition/Decision Criterion (3)

Property: If n = #conditions then

covering MC/DC requieres at least n+1 TC and max 2n TC

n+1  #Test cases  2*n

Coupled Conditions: Flipping the truth value of one condition

impacts the truth value of another one

When there is no coupled conditions, the minimum (n+1) can

always be reached [Ref ?]

2023 EJCP 48

Links with object-code coverage?

Covering MC/DC  covering all the decisions of the object-code

But

Covering MC/DC  covering all the decisions of the object-code

Covering all paths of the object-code  covering MC/DC

But

Covering all paths of the object-code  covering MC/DC

2023 EJCP 49

From the Galileo development standard

Structural coverage DAL A DAL

B
DAL C DAL

D

DAL

E

Statement coverage
(source code)

100% 100% 100% 90% N/A

Statement coverage
(object code)

100% N/A N/A N/A N/A

Decision coverage

(source code)
100% 100% N/A N/A N/A

Modified Condition &
Decision Coverage
(Source code)

100% N/A N/A N/A N/A

2023 EJCP 50

3. Automatic Test Input Generation

2023 EJCP 51

- Exhaustive Testing

- Testing by Sampling

- Random Testing (a.k.a. Fuzzing)
- Symbolic Execution

Most Used Techniques

2023 EJCP 52

Exhaustive Testing

- Exhaustive sampling of the program input space

- Selection of all inputs and execution of the program

- Equivalent to a correction proof (when the execution terminates)

Dom(P)

2023 EJCP 53

Exhaustive Testing: Limitations and Advantages

- Usually untractable!

- Interesting estimation of the size of the input search space, against a

test objective

Test Objective Example: To reach a selected instruction in the code

P (ush x1, ush x2, ush x3) { ... }

232  232  232 values = 296 distinct test inputs

2023 EJCP 54

Testing by Sampling

Dom(P)

Weak version of exhaustive testing

 Examples :

 {0, 1, 2, 232-1} pour un ush

 {NaN, -INF,-3.40282347e+38, -1.17549435e-38, -1.0, -0.0,.. }

 for a 32-bit floating-point number (IEEE 754)

X1

X5

X2 X3 X4

X6

2023 EJCP 55

Random Testing

Uniform probability distribution on the program input space

 (i.e., each test input is equi-probable)

- Using pseudo-random generators

- Require an automated oracle (e.g., Metamorphic Testing)

- Stopping criteria must be fixed (number of test inputs, covering a

structural criterion, time-out, etc.)

2023 EJCP 56

Selection Criterion C

- Process of test inputs selection

- Sometimes, it induces a « partition » over the program input space

(e.g., All_paths of P)

P(int i,int j)

{

if(C1)

else ...

if(C2)

else ...

} i

j

C1C2

C1 C2

C1C2

C1C2

Dom(P)

2023 EJCP 57

Selection of at least one element per subdomain of the partition

X1X4

X3

X2

Deterministic Coverage of Criterion C

Dom(P)

Based on the uniformity assomption that a single input is sufficient to

test the whole subdomain

2023 EJCP 58

Probabilistic Coverage of Criterion C

Random selection of test inputs according to a distribiution profile

X1

X7

X2

X4X5
X6

X8 X3

Dom(P)

Is Random Testing Efficient to Cover a Criterion?

Dom(P)

A1

A3

A4

A2

p{xA}: probability that a random test input x covers an element A

SC = {A1,..,A4}

Here p{xA1} < p{xA2} < p{xA3} < p{xA4}

Hence, random testing covers better A4 than A1

RT is well adapted to test the program robustness, but hill-conditioned to test

corner-cases
2023 EJCP 59

Symbolic state: <Path, State, Path Conditions>

Path = ni-..-nj is a path expression of the CFG

State = <vi,i> vVar(P) where i is an algebraic expression over X

Path Cond. = c1,..,cn where ci is a condition over X

X denotes symbolic variables associated to the program inputs and Var(P) denotes

internal variables

Symbolic execution

2023 EJCP 60

Symbolic execution

<a, <z,1.>, <w,abs(Y)>, true >

<a-b, <z,1.>, <w,abs(Y)>, abs(Y) != 0 >

<a-b-c, <z,X>, <w,abs(Y)-1>, abs(Y) != 0 >

<a-b-c-b, <z,X.>, <w,abs(Y)-1>,

 abs(Y) != 0, abs(Y)-1 != 0 >

< a-b-c-b-c, <z,X2>, <w,abs(Y)-2>,
 abs(Y) != 0, abs(Y)-1 != 0 >

<a-b-(c-b)2, <z,X2>, <w,abs(Y)-2>,
 abs(Y) != 0, abs(Y) != 1, abs(Y)–2 = 0 >

<a-b-(c-b)2-d, <z,X2>, <w,abs(Y)-2>,
 abs(Y) != 0, abs(Y) != 1, abs(Y) = 2, Y  0 >

<a-b-(c-b)2-d-f, <z,X2>, <w,0>, Y=2 >

Ex : a-b-(c-b)2-d-f with X,Y

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

Computing Symbolic States

➢ <Path, State, PC> is computed by induction over each statement of Path

➢ When the Path conditions are unsatisfiable then Path is non-feasible and

reciprocally (i.e., symbolic execution captures the concrete semantics)

ex : <a-b-d-e-f,{…}, abs(Y)=0  Y<0 >

➢ Forward vs backward analysis:

Forward → interesting when states are needed

Backward → saves memory space, as complete states are not computed

2023 EJCP 62

Backward analysis

Ex : a-b-(c-b)2-d-f with X,Y

 f,d: Y 0

 b: Y 0, w = 0

 c: Y 0, w-1 = 0

 b: Y 0, w-1 = 0, w != 0

 c: Y 0, w-2 = 0, w-1 != 0

 b: Y 0, w-2 =0, w-1 != 0,w != 0

 a: Y 0, abs(Y)-2 = 0,

 abs(Y)-1 != 0, abs(Y) != 0

 Y = 2

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

EJCP 63

Constraint Solving in Symbolic Evaluation

Mixed Integer Linear Programming approaches
(i.e., simplex + Fourier’s elimination + branch-and-bound)

CLP(R,Q) in ATGen (Meudec 2001)
lpsolve in DART/CUTE (Godefroid/Sen et al. 2005)

SMT-solving (= SAT + Theories)

STP in EXE and KLEE (Cadar et al. 2006)
Z3 in PEX and SAGE (Tillmann and de Halleux 2008)

Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler (Williams et al. 2005)
Disolver in SAGE (Godefroid et al. 2008)
EUCLIDE (Gotlieb 2009)
ECLAIR (Bagnara Bagnara Gori 2013)

2023 EJCP 64

Problems for Symbolic Evaluation Techniques

→ Combinatorial explosion of paths

→ Symbolic execution constrains the shape of dynamically allocated objects

 int P(struct cell * t) {

 if(t == t->next) { …

 constrains t to:

→ Floating-point computations 

t

next

2023 EJCP 65

F Charreteur, B Botella, A Gotlieb. Modelling dynamic memory management in constraint-

based testing. Journal of Systems and Software. Elsevier, 2009

float foo(float x) {

float y = 1.0e12, z ;

1. if(x < 10000.0)

2. z = x + y;

3. if(z > y)

4. …

Is the path 1-2-3-4 feasible ?

Path conditions:

x < 10000.0

x + 1.0e12 > 1.0e12

On the reals : x  (0,10000)

On the floats : no solution !

2023 EJCP 66

float foo(float x) {

float y = 1.0e12, z ;

1. if(x > 0.0)

2. z = x + y;

3. if(z == y)

4. …

Is the path 1-2-3-4 feasible ?

Path conditions:

x > 0.0

x + 1.0e12 = 1.0e12

On the reals : no solution

On the floats: x  (0, 32767.99…)

Conversely,

Solution: build a dedicated constraint solver over the floats !

2023 EJCP 67

B Botella, A Gotlieb, C Michel. Symbolic execution of floating‐point computations. STVR 2006

R Bagnara, M Carlier, R Gori, A Gotlieb. Symbolic path-oriented test data generation for floating-point programs.

IEEE ICST 2013

Dynamic Symbolic Evaluation (DSE)

➢ Symbolic execution of a concrete execution (also called concolic execution)

➢ By using input values, feasible paths only are (automatically) selected

➢ Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005),

PEX (Tillman et al. Microsoft 2008),

SAGE (Godefroid et al.2008)

KLEE (Cadar et al. 2008)

2023 EJCP 68

Dynamic Symbolic Execution for All-k-paths

1. Draw an input at random, execute it and record path conditions

b

a

t

c

t

d

t

2. Flip a non-covered decision and solve the constraints to find a new input x

b

a

t

c

t

d

f

3. Execute with x

4. Repeat 2

b

a

t

c

t

f

de

f

t

b

a

t

c

t

f

de

f

f

….
b

a

t

c

t

f

de

fg

h

i

jk

Up to given bounds

2023 EJCP 69

2023 EJCP 70

f(int i)

{

j = 2;

if(i  16)

j = j * i;

if(j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (1)

2023 EJCP 71

f(int i)

{

j = 2;

if(i  16)

j = j * i;

if(j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (2)

Random imput generation

(i = 15448)

→ Path 1-3-5

2023 EJCP 72

f(int i)

{

j = 2;

if(i  16)

j = j * i;

if(j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (3)

Try to solve

j1=2

i > 16

j1 > 8

Unsatisfiable, therefore

Path 1-3-4 is non-feasible

2023 EJCP 73

f(int i)

{

j = 2;

if(i  16)

j = j * i;

if(j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (4)

Bactrack and try to solve

j1=2

i <= 16

→ (i = 2) -- Path 1-2-3-5

2023 EJCP 74

f(int i)

{

j = 2;

if(i  16)

j = j * i;

if(j > 8)

j = 0;

return j;

}

5

4

3

2

1

f

t

t

f

Example (5)

Bactrack and try to solve

j1 = 2

i <= 16

j2 = j1*i

j2 > 8

→(i = 10) -- Path 1-2-3-4-5

All-paths covered with three test

data (i = 15448, i = 2, i = 10)

2023 EJCP 75

Dynamic Symbolic Execution: Discussion

Requires to bound the number of iterations in loops
→ suitable for automatic test data generation

for the All-k-paths criterion

Performance of the method depends on the first initial random
input

Numerous extensions to handle pointers as input parameters,
logical decisions, function calls, bit-to-bit operations

2023 EJCP 76

Code-Based Testing

3.
AUTOMATIC
TEST INPUT
GENERATION

2.
DECISION
TESTING

1.
TESTING
CRITERIA

Oracle Problem

4. Metamorphic

Testing

2023 EJCP 77

4. Metamorphic Testing

Non-testable programs

[Weyuker TSE 82]

 No (complete and correct) oracle available

Because

No formal specifications, incomplete specifications;

Expected results too difficult to compute;

Inferred/generalized from a set of instances;

Depending on the execution environment;

Typical examples:
Third-party library functions, RESTful APIs
Complex mathematical functions (using floating-point computations)
Trained ML models
Optimization programs (optimal planners, assignment, scheduling, etc.)
Reactive and self-adaptive programs

78

Metamorphic Testing [Chen et al. 98]

Let’s start with a trivial example:
P : a program that implements the gcd of 2 integers
Problem: P(1309, 693) = ?

MR: u, v, gcd(u, v) = gcd(v, u)

Hence, if P(1309, 693)  P(693, 1309) then verdict = Fail

* Note that many other programs than gcd satisfy P(u, v) = P(v, u) so,
MRs are necessary, but not sufficient to establish program correctness

** Note also that there are many other possible MRs

MR: u, v, gcd(p.u, p.v) = p. gcd(u, v) if p is a prime number

MR: u, v gcd(u, v) = gcd(v, u-v) if u > v
79

Metamorphic Relation (MR) of a program P:
User-specified input-output relation about P

Graph Theory

How to test a program P that computes a shortest path in an undirected
graph G?

shortestPath(G, a, b) = ?

if P(G, a, b) = a-e1-e2-e3-b and P(G, b, a) = b-g1-g2-a then
verdict = Fail

MR: a, b |shortestPath(G, a, b)| = |shortestPath(G, b, a)|

* Note that MRs can be based on the usage of other functions (possibly under test)

** Note also that MRs can involve more than one additional computation

MR: |shortestPath(G, a,b)| ≤ |shortestPath(G, a, c)|+ |shortestPath(G, c, b)|

Search Engines

if search(“tom” OR ”jerry”) returns less items than search(“tom” AND ”jerry”)
then verdict = Fail

MR: k1, k2 |search(k1 OR k2)| ≥ |search(k1 AND k2)|

x: (k1 OR k2), y: (k1 AND k2) implies |search(x)| ≥ |search(y)|

Ri(x,y) Ro(P(x),P(y))

Main Usages

1. To generate follow-up test cases

82

x P P(x)Test case (Pass)

t(x)Follow-up
test case

t
Transformation

extracted from MR

P P(t(x))

P(t(x))
is checked using the MR

?

2. To create partial oracles

83

x P P(x)
Test cases

y P P(y)

MR Ri(x,y) ?Ro(P(x),P(y))

Strategies for Finding Metamorphic Relations

1) Driven by transformation over input-data
Which transformations t over the inputs x do not change the outcome of
P?
i.e., find t such that P(x) = P(t(x))

Transformations t: add, remove or reorder elements, perturb inputs, shift
or rotate images, …

2) Driven by output-relation
Given two executions of P, what kind of relations do exist between these
executions ?
i.e., Given x,y, P(x), P(y), find Ro(P(x), P(t(x))

Relations Ro: less_or_equal, length, subset, equivalent,…

3) Driven by domain-knowledge
Which invariant properties P has to satisfy ?

4)…

Applications of MT (1/3)

IEEE TSE 2017

Testing compilers PLDI’14

Testing bioinformatics
programs
(Genes Regulat. Net.
simulation)

Testing online search
engines (Flickr, Youtube,
Spotify,...)

Applications of MT (2/3)

Testing code obfuscators,
testing web interfaces,
penetration testing

Testing simple ML models JSS 2011

Applications of MT (3/3)

Testing DNNs in self-driving
cars

ICSE’18

Testing autonomous drones

Generating driving scenes

ASE’18

MT: Pros/Cons

+ Automated powerful testing method

+ Multiple MRs can be combined altogether

+ Lightweight method, easy to setup and
deploy (once MRs have been identified)

+ Successful in testing ML models

88

- Designing MRs often require
domain knowledge

- MRs have different fault-
revealing capabilities

- Shallow underlying theory,
lack of foundations

- Not yet used for systematically
testing critical programs

Remaining Challenges

Lack of foundational theory

Need for automatic finding and selection of MRs

MT for performance (execution time, energy consumption)
is not yet sufficiently developed

MT of Collaborative Robots

89

2023 EJCP 90

First Synthesis

In the industrial world, software systems are mostly validated with
software testing (no model checking, no correction proof)

Code-based testing (Testing criteria, MCDC) has a long-term
tradition and it has been popularized with dynamic symbolic
execution (DSE) which combine coverage and SE

Metamorphic Testing is crucial and fruitful technique to deal
with the oracle problem

Numerous tools, methods and approaches exist. That background
cannot be ignored when engaging new research works

Still, open challenges remain…

2023 EJCP 91

Course Overview

Software Testing Introduction

Code-based Testing

Testing of Autonomous Systems

Open Challenges in Software Testing

Autonomous Software-Systems

• Systems which have a certain degree of self-decision capabilities,

e.g., self-driving cars, industrial robots, smart transportation systems,…

• Systems with increased capabilities of planning (what, how), scheduling (when, who) and

executing complex functions, with limited human intervention, managing unexpected events,

such as faults or hazards

• Not equal to automated systems, which have limited capacity to learn and adapt to

unexpected events

• In robotics and automated driving, the main focus for autonomy is to complement human’s

capacity to take decisions based on vast amounts of uncertain raw data

Universal Robot – UR3

Cobot

IEEE Spectrum – Self-driving car Kongsberg Maritime – Yara BirkelandABB Robotics – YUMI

Cobot

AI in the 5 Pilars of Autonomous Systems

Perception Representation Cognition Interaction Execution

Computer
Vision

Natural
Language
Processing

Multi-Agent
Systems Optimization

Conceptual
Graphs

Deep Learning

Human-
Machine

Interactions

AI Planning

Scheduling
Pattern

Recognition

Multi-Criteria
Decision

Conditional
Preference
Networks

Reinfocement
Learning

Constraint
Programming

AI for Continuous Testing

Testing AI Systems

AI for Testing AI

Norwegian Yara Birkeland
This electrical autonomous

cargo vessel will transport

fertiliser from Yara's

Porsgrunn plant via inland

waterways to the deep-sea

ports of Larvik and Brevik (31

nautical miles). Removing up

to 40,000 truck journeys

annually.

The system is based on a seven-axis robotic

arm that takes the mooring ropes with loops

and wraps them around bollards on the dock.

The mooring system has redundant

kinematics, with built-in movement

compensation and track planning.

The vessel’s position against the quay will

inform the robotic arm where each bollard is

located, and the track planning is

automatically generated by the control

system.

Automated Mooring System

Norwegian shore

Source: MacGregor Inc.

Testing Non-testable Autonomous Systems

• Testing perception systems needs to generate tests with (environment)

hazards

• Test coverage over high-dimensional inputs is limited

• Non-linear motion planning involves solving complex constraint models

• Validation of learning systems needs test oracles which can hardly be defined

• Continuous testing is key but needs high control and more diversity

An Ideal Cycle of Continuous Integration and

its Timing Challenges

Developer
commit

Build

Deploy

Test

Developer
feedback

Test Case Selection/Generation

Test Suite Reduction

Test Case Prioritization

Test Execution Scheduling

Timeline

+ Test Execution

→ Test preparation time is relative to test execution time!

Reinforcement Learning

2. Test
Execution
Scheduling

3. ML for testing
autonomous

Systems

1. Test
Suite

Reduction

Deployment of “Intelligent” Continuous Testing

Constraint Programming Constraint-based
Scheduling

NP-hard
problem!

Similar to the Vertex
Cover problem in a

bipartite graph

Optimal Test Suite Reduction

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimally Reduced
Test Suite

Fi: Requirements
TC: Test Cases

Constraint Programming (CP)

Domain
Filtering

Variable
Labeling

Constraint
Propagation• Routinely used in Validation & Verification,

CP handles efficiently hundreds of thousands
of constraints and variables

• CP is versatile: user-defined constraints, dedicated solvers,
programming search heuristics but it is not a silver bullet
(developing efficient CP models and heuristics requires expertise)

→ Global constraints: relations over a non-fixed number
of variables, implementing dedicated filtering algorithms

The nvalue global constraint

[Pachet Roy 1999, Beldiceanu 01]

nvalue(N, V)
Where:

N is a finite-domain variable

V = [V1, …, Vk] is a vector of variables

N = 𝑐𝑎𝑟𝑑(Vi 𝑖 𝑖𝑛 1. . 𝑘)nvalue(N, V) holds iff

nvalue(N, [3, 1, 3]) entails N = 2
nvalue(3, [X1, X2]) fails
nvalue(1, [X1, X2, X3]) entails X1 = X2 = X3

N in 1..2, nvalue(N, [4, 7, X3]) entails X3 in {4,7}, N=2

Sol: F1 = 2, F2 = 3, F3 = 2
Optimally Reduced Test Suite

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
nvalue(MaxNvalue, [F1, F2, F3])
Minimize(MaxNvalue)

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimal Test Suite Reduction with nvalue

However,
only F1, F2, F3

are available
for labeling!

The global_cardinality constraint (gcc)

[Regin AAAI’96]

gcc(T, d, V)
Where

T = [T1, …, TN] is a vector of N variables

d = [d1, …., dk] is a vector of k values

V = [V1, …, Vk] is a vector of k variables

∀𝑖 𝑖𝑛 1. . 𝑘,
Vi= card({j | Tj=di})

gcc(T, d, V) holds iff

Filtering algorithms for gcc are based on max-flow computations

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc([F1, F2, F3], [1,2,3,4,5,6], [V1, V2, V3, V4, V5, V6])
nvalue(MaxNvalue, [F1, F2, F3])
Minimize(MaxNvalue)

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Mixt model using gcc and nvalue

Model pre-processing

F1 in {1, 2, 6} → F1 = 2
as cov(TC1)  cov(TC2) and cov(TC6)  cov(TC2)
withdraw TC1 and TC6

F1

F2

F3

TC1

TC 2

TC 3

TC4

TC5

TC6

F3 is covered → withdraw TC5

F2 in {3,4} → e.g., F2 = 3, withdraw TC4

Pre-processing rules can be expressed once
and then applied iteratively

Comparison with CPLEX, MiniSAT, Greedy (uniform costs)
(Reduced Test Suite percentage in 60 sec)

A. Gotlieb and D. Marijan - FLOWER: Optimal Test Suite Reduction As a Network Maximum Flow – ACM Int. Symp. on Soft.
Testing and Analysis (ISSTA'14), San José, CA, Jul. 2014.
A. Gotlieb and D. Marijan - Using Global Constraints to Automate Regression Testing - AI Magazine 38, no. Spring (2017).

Other Criteria to Minimize

F1

F2

F3

TC1

TC4

TC5

TC6

Requirement coverage
is always a prerequiste

Optimally Reduced
Test Suite

Execution time!

TC2

TC3

1 min

5 min

3 min

3 min

1 min

1 min

A Gotlieb, M Carlsson, D Marijan, A Petillon. A New Approach to Feature-based Test Suite Reduction in

Software Product Line Testing. ICSOFT-EA 2016. Best paper award. Scitepress.org

107

Reinforcement Learning

2. Test
Execution
Scheduling

3. ML for testing
autonomous

Systems

1. Test
Suite

Reduction

Deployment of “Intelligent” Continuous Testing

Constraint Programming Constraint-based
Scheduling

Test Selection and Test Suite Reduction: An Example at
ABB Robotics

10..30 code changes per day

Test Case Repository:
~10,000 Test Cases (TC)
~25 distinct Test Robots
~500 distinct features

From a concrete set up:

→ Select, schedule and execute about 150 TC per CI cycle

Constraint-Based Scheduling

Tasks
with distinct
characteristics

Agents
with limited time or
resources capacity

Assignment of Tasks to Agents such that:

1. Task execution is not interrupted or paused
2. Agents are maximally occupied
3. Tasks sharing a global resource are not
executed at the same time
4. Diversity of assignment of tasks to agents is
ensured

Schedule

Goal:
Schedule as much tasks as possible on available agents
such that the overall execution time is minimized

Test Case Execution Scheduling

T: a set of Test Cases

M: a set of Machines, e.g., robots

G: a set of (non-shareable) resources

d: T → N estimated duration

g: T → 2G usage of global resources

f: T → 2M possible machines

Function to optimize:
TimeSpan: the overall duration of test execution TE

(in order to minimize the round-trip time)

(T, M, G, d, g, f)

Disjunctive scheduling, non-
preemptive,
non-shareable resources,
machine-independant
execution time

In practice, global optimality is desired but not mandatory, it’s more important to control TS w.r.t TE

→ Time-contract global optimization

m3

m2

m1

A simple
example

d f g

r1

Test Cases: t1, t2, t3, t4, t5, t6, t7, t8, t9, t9, t10

The CUMULATIVE global constraint

[Aggoun & Beldiceanu AAAI’93]

CUMULATIVE(t, d, r, m)

Where
t = (t1, …, tN) is a vector of tasks, each ti in Si .. Ei

d = (d1, …., dN) is a vector of task duration

r = (r1, …, rN) is a vector of resource consumption rates

m is a scalar

෍

𝑖=1

𝑁

𝑟𝑖 ≤ 𝑚

ti ≤ t ≤ ti + di

CUMULATIVE (t, d, r, m) holds iff

Using the global constraint CUMULATIVE

CUMULATIVE((t1,..,t10), (d1,..,d10), (1, ..,1), 3),

M1,..,M6 in 1..3,

M7 = 1, M8 = 2, M9 = 3, M10 in {1,3},

(E2 ≤ S3 or E3 ≤ S2), (E2 ≤ S4 or E4 ≤ S2),

(E3 ≤ S4 or E4 ≤ S3),

MAX(MaxSpan, (E1, …, E10)),

LABEL(MINIMIZE(MaxSpan), (S1,..,S10), (M1,..,M10))

An optimal solution:
S1 = 0, S2 = 4, S3 = 8, S4 = 0, S5 = 4, S6 = 7, S7 = 2, S8 = 9,

S10 = 3,

M1 = 1, M2 = 1, M3 = 1, M4 = 2, M5 = 2, M6 = 2, M7 = 1,

M8 = 2, M9 = 3, M10 = 3

MaxSpan = 11

M Mossige, A Gotlieb, H Spieker, H Meling. Time-aware test case execution scheduling for cyber-physical

systems. Principles and Practice of Constraint Programming, Melbourne, 2017

Limitations of this model

• Static model – In practice, robots and test cases are not necessarily
available at each CI cycle → Need a more dynamic model!

• Historical data about test case success/failure is not taken into
consideration!

• Diversity in scheduling among CI cycles is not handled

T2,
T5,
T34 T45,

T55

T4,
T56,
T67

T7,
T23

T3,
T6,

T45,
T78

A. Test results from n
previous runs (Pass/Fail)

B. Developer priority
C. Test duration
D. Time since last execution

- Modeled as a Multi-Cycles Assignment Problem
- Computing priorities based on A, B, C (Priority)
- Combined with D (Affinity) with several heuristics
- Incremental solving from CI cycle to CI cycle

A New Approach Based on Priority and Affinity

Affinity: more diversity in the test execution process

90

2 cycles since last
exec.

10 cycles since last
exec.

3 cycles
since last
exec.

1 cycle
since last
exec.

0 cycle
since last
exec.

Rotational Diversity

Priority only (FOP)

Affinity only (FOA)

Product Combination (PC)

Objective Switch (OS)

Weighted Partial Profits (WPP)

“SWMOD deployed at ABB Robotics and used every day to schedule tests
throughout several ABB centers in the world (Norway, Sweden, India, China)”

- ~1500 lines of SICStus Prolog Code with CP(FD)
- Fully integrated into the MS-TFS Continuous Integration
- Using the global constraint binpacking + rotational diversity
- Deployed at ABB since Feb. 2019

SWMOD: Deployment of Time-aware Test Case Execution
Scheduling at ABB Robotics

H. Spieker, A. Gotlieb and M. Mossige - Rotational Diversity in Multi-Cycle Assignment Problems - In Proc. of the Thirty-Third AAAI
Conference on Artificial Intelligence (AAAI-19). Feb. 2019.

Constraint-based Scheduling

CP with global constraints (cumulative, binpacking) and rotational diversity
can solve the test execution scheduling problem

119

Reinforcement Learning

2. Test
Execution
Scheduling

3. ML for testing
autonomous

Systems

1. Test
Suite

Reduction

Deployment of “Intelligent” Continuous Testing

Constraint Programming Constraint-based
Scheduling

Test Prioritization: Learning from previous test runs

Motivation:
Adapting priorities to the most interesting test cases based on past test verdicts (from previous CI cycles)

• Considering test case meta-data only (test verdicts, execution time, ...)
• Limited memory of past executions / test verdicts

• Using Reinforcement Learning for priorising test cases
Implemented with two

distinct memory models

(tableau, ANN) and three
reward functions

Reward Functions and
Experimental Evaluation

3 Industrial data sets (1 year of CI cycles)
NAPFD: Normalized Average Percentage of Faults Detected

H. Spieker, A. Gotlieb, D. Marijan and M. Mossige Reinforcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’17). New York, NY, USA: ACM, 2017.

Adaptive Metamorphic Testing

Motivation: Learning which Metamorphic Relation works best to test
vision-based systems

H. Spieker, A. Gotlieb – Adaptive Metamorphic Testing with Contextual Bandits – Journal of Systems and Software. 165: 110 (2020)
A. Gotlieb, D. Marijan and H. Spieker: Testing Industrial Robotic Systems: A New Battlefield!
In Software Engineering for Robotics, 465p. Edited by A. Cavalcanti, B. Dongol, R. Hierons, J. Timmis, J. Woodcock ed. Springer Nature,
2021.

Object Detection case study – MS COCO dataset of 5,000
images

TensorFlow.org - Image classification – dataset of 10,000 images

Using Contextual Bandits
(Reinforcement Learning) to
 learn how to select
metamorphic relations
→ Adaptive Metamorphic Testing

Testing autonomous systems brings new interesting challenges for
software V&V research

Some AI techniques such as Constraint Programming (CP) and
global constraints are already very successful in test case generation,
test suite reduction and test execution scheduling

Testing autonomous systems such as
collaborative robots or self-driving cars
is challenging as:

- Expected behaviours cannot be
specified in advance
- Interactions with humans involve
more safety issues

Take Away Message

2023 EJCP 124

Course Overview

Software Testing Introduction

Code-based Testing

Testing of Autonomous Systems

Open Challenges in Software Testing

Neuro-symbolic AI models combine NN (CNN, RNN, LSTM

Transformers, etc.) with symbolic reasoning to improve

1. The perf. of classification/regression models in ML

2. The explicability of NN models

Besides the oracle problem, testing these models is challenging

as it it requires to quantify the benefice of each part (NN vs

Symbolic)

Testing the quality/interest of explanations is an open research

question – An overall field has been created, the field of XAI

Testing Neuro-Symbolic AI models

Need to adopt a definition of Trustworthy AI (e.g., EU HLEG AI)

Testing AI model Trustworthiness (1)

Testing AI model Trustworthiness: A Research Programme

Testing

AI models

Diversity,

non-discrimination

and

Fairness

Transparency

Privacy and

data

governance

Human agency

and

oversight

Technical

robustness

 and safety

Societal and

environmental

well-beingAcountability

Conformance Testing

Validation Intelligence for Autonomous Software-Systems

VIAS Dept.

Arnaud GOTLIEB

VIAS explores how to test the robustness, reliability, and transparency of software-systems (industrial robots, self-
driving cars, navigation systems, etc.) with intelligent methods

1. Trustworthy Artificial Intelligence for Autonomous Systems
2. Testing Intelligent Transport Systems
3. Learning and Reasoning for Data-Intensive Systems

April 2023 (11 employees): 3 permanent researchers, 5 postdocs, 3 PhDs, 3 external PhDs + 2 ongoing recruitments

Funded by EC: AI4CCAM (HEU, Coordination, 2023-25), TRANSACT (ECSEL, 21-24), MARS (HEU, 23-26), CERTIFAI (HEU, 23-26)

Funded by RCN: T-Largo (2019-22), T3AS (19-22), SMARTMED (19-22), TSAR (19-23), AutoCSP (21-24)

RESIST_EA: 1st Inria-Simula Associate Team on Resilience of Software Systems (2021-2024)

Thank You for Your Attention

	Slide 1
	Slide 2: Course Overview
	Slide 3
	Slide 4: 9/9/1947
	Slide 5: 1960-80: Testing = Debugging
	Slide 6: 1980-90: Testing = Destruction
	Slide 7: 1990-2000: Testing = Fault Prevention
	Slide 8
	Slide 9
	Slide 10: Software testing in the V software developpement process:
	Slide 11: 2000-2010 : Testing = Model-Based Testing (MBT)
	Slide 12: 2010-2020: Testing = Agile Testing/Test-Driven Dev. (TDD)
	Slide 13: 2020-20..: Testing = Intelligent Testing / AI-driven Testing
	Slide 14: Terminology (IEEE Standard Glossary of SE, BCS’s standard for Softw. Testing)
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Course Overview
	Slide 28
	Slide 29: 1. TESTING CRITERIA
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Measuring code coverage
	Slide 41: 2. DECISION TESTING
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: From the Galileo development standard
	Slide 50: 3. Automatic Test Input Generation
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Constraint Solving in Symbolic Evaluation
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Example (1)
	Slide 71: Example (2)
	Slide 72: Example (3)
	Slide 73: Example (4)
	Slide 74: Example (5)
	Slide 75: Dynamic Symbolic Execution: Discussion
	Slide 76
	Slide 77: 4. Metamorphic Testing
	Slide 78: Non-testable programs [Weyuker TSE 82]
	Slide 79: Metamorphic Testing [Chen et al. 98]
	Slide 80: Graph Theory
	Slide 81: Search Engines
	Slide 82: Main Usages
	Slide 83
	Slide 84: Strategies for Finding Metamorphic Relations
	Slide 85: Applications of MT (1/3)
	Slide 86: Applications of MT (2/3)
	Slide 87: Applications of MT (3/3)
	Slide 88: MT: Pros/Cons
	Slide 89: Remaining Challenges
	Slide 90: First Synthesis
	Slide 91: Course Overview
	Slide 92
	Slide 93
	Slide 94: Norwegian Yara Birkeland
	Slide 95: Testing Non-testable Autonomous Systems
	Slide 96
	Slide 97
	Slide 98: Optimal Test Suite Reduction
	Slide 99
	Slide 100: The nvalue global constraint [Pachet Roy 1999, Beldiceanu 01]
	Slide 101
	Slide 102: The global_cardinality constraint (gcc) [Regin AAAI’96]
	Slide 103
	Slide 104: Model pre-processing
	Slide 105
	Slide 106: Other Criteria to Minimize
	Slide 107
	Slide 108
	Slide 109
	Slide 110: Test Case Execution Scheduling
	Slide 111
	Slide 112: The Cumulative global constraint [Aggoun & Beldiceanu AAAI’93]
	Slide 113
	Slide 114
	Slide 115: A New Approach Based on Priority and Affinity
	Slide 116: Affinity: more diversity in the test execution process
	Slide 117: Rotational Diversity
	Slide 118: SWMOD: Deployment of Time-aware Test Case Execution Scheduling at ABB Robotics
	Slide 119
	Slide 120
	Slide 121
	Slide 122: Adaptive Metamorphic Testing
	Slide 123: Take Away Message
	Slide 124: Course Overview
	Slide 125: Testing Neuro-Symbolic AI models
	Slide 126: Testing AI model Trustworthiness (1)
	Slide 127: Testing AI model Trustworthiness: A Research Programme
	Slide 128: Validation Intelligence for Autonomous Software-Systems

